Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Non-binary entanglement-assisted quantum stabilizer codes


  • 99 Accesses

  • 2 Citations


In this paper, we present the p m-ary entanglement-assisted (EA) stabilizer formalism, where p is a prime and m is a positive integer. Given an arbitrary non-abelian “stabilizer”, the problem of code construction and encoding is settled perfectly in the case of m = 1. The optimal number of required maximally entangled pairs is discussed and an algorithm to determine the encoding and decoding circuits is proposed. We also generalize several bounds on p-ary EA stabilizer codes, such as the BCH bound, the G-V bound and the linear programming bound. However, the issue becomes tricky when it comes to m > 1, in which case, the former construction method applies only when the non-commuting “stabilizer” satisfies a sophisticated limitation.


本文对pm元纠缠辅助量子稳定子码进行了深入研究, 其中p为素数, m为正整数。在m=1, 即p元码的情况下, 给定任意一个非交换的“稳定子”, 纠缠辅助码的构造及编码问题均得到了彻底解决。同时, 本文还计算了p元码构造时所需的最优最大纠缠对数目以及BCH界、G-V界、线性规划界等码界。此外, 本文还提出了确定p元纠缠辅助码编码及译码线路的确切算法。然而需要注意的是, 当m>1时, p元码的构造方法只有当所给的非交换的“稳定子”满足一个苛刻的条件时才能适用。

This is a preview of subscription content, log in to check access.


  1. 1

    Calderbank A R, Shor P W. Good quantum error-correcting codes exist. Phys Rev A, 1995, 54: 1098–1105

  2. 2

    Gottesman D. Stabilizer codes and quantum error correction. Dissertation for Ph.D. Degree. Psadena: California Institute of Technology, 1997. 17–35

  3. 3

    Steane A M. Error correcting codes in quantum theory. Phys Rev Lett, 1997, 77: 793–797

  4. 4

    Gottesman D. An introduction to quantum error correction. In: Lomonaco S J, ed. Quantum Computation: a Grand Mathematical Challenge for the Twenty-First Century and the Millennium. Providence: American Mathematical Society, 2002. 221–235

  5. 5

    Nielsen M A, Chuang I L. Quantum computation and quantum information. Am J Phys, 2002, 70: 558–559

  6. 6

    Young K C, Sarovar M, Blume-Kohout R, et al. Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys Rev X, 2013, 3: 5326–5333

  7. 7

    Lidar D, Brun T. Quantum Error Correction. Cambridge: Cambridge University Press, 2013. 181–199

  8. 8

    Bowen G. Entanglement required in achieving entanglement-assisted channel capacities. Phys Rev A, 2002, 66: 357–364

  9. 9

    Brun T, Devetak I, Hsieh M H, et al. Catalytic quantum error correction. IEEE Trans Inf Theory, 2006, 60: 3073–3089

  10. 10

    Brun T, Devetak I, Hsieh M H, et al. Correcting quantum errors with entanglement. Science, 2006, 314: 436–439

  11. 11

    Wilde M M. Quantum coding with entanglement. Dissertation for Ph.D. Degree. Los Angeles: University of Southern California, 2008. 21–40

  12. 12

    Lai C Y, Brun T. Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys Rev A, 2013, 88: 2343–2347

  13. 13

    Lai C Y, Brun T A, Wilde M M, et al. Duality in entanglement-assisted quantum error correction. IEEE Trans Inf Theory, 2013, 59: 4020–4024

  14. 14

    Lai C Y, Brun T A, Wilde M M, et al. Dualities and identities for entanglement-assisted quantum codes. Quantum Inf Process, 2014, 13: 957–990

  15. 15

    Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

  16. 16

    Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

  17. 17

    Blume-Kohout R, Caves C M, Deutsch I H, et al. Climbing mount scalable: physical-resource requirements for a scalable quantum computer. Found Phys, 2002, 32: 1641–1670

  18. 18

    Soderberg K A B, Monroe C. Phonon-mediated entanglement for trapped ion quantum computing. Rep Prog Phys, 2010, 73: 569–580

  19. 19

    Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phy Rev L, 1996, 76: 722–725

  20. 20

    Bennett C H, Divincenzo D P, Smolin J A, et al. Mixed-state entanglement and quantum error correction. Phy Rev A, 1996, 54: 3824–3851

  21. 21

    Gottesman D. Fault-tolerant quantum computation with higher-dimensional systems. Chaos Soliton Fract, 1998, 10: 302–313

  22. 22

    Rains E M. Nonbinary quantum codes. IEEE Trans Inf Theory, 1999, 45: 1827–1832

  23. 23

    Ashikhmin A, Knill E. Nonbinary quantum stabilizer codes. IEEE Trans Inf Theory, 2001, 47: 3065–3072

  24. 24

    Grassl M, Roetteler M, Beth T, et al. Efficient quantum circuits for non-qubit quantum error-correcting codes. Int J Found Comput S, 2003, 14: 757–775

  25. 25

    Grassl M, Beth T, Rotteler M, et al. On optimal quantum codes. Int J Quantum Inf, 2004, 2: 757–775

  26. 26

    Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over finite fields. IEEE Trans Inf Theory, 2006, 52: 4892–4914

  27. 27

    Kim J, Walker J. Nonbinary quantum error-correcting codes from algebraic curves. Discrete Math, 2008, 308: 3115–3124

  28. 28

    Feng K Q, Chen H. Quantum Error-Correcting Codes. Beijing: Science Press, 2010. 103–106

  29. 29

    Smith A, Anderson B E, Sosa-Martinez H, et al. Quantum control in the Cs 6S(1/2) ground manifold using radiofrequency and microwave magnetic fields. Phys Rev Lett, 2013, 111: 170502

Download references

Author information

Correspondence to Zhi Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Ma, Z., Wei, Z. et al. Non-binary entanglement-assisted quantum stabilizer codes. Sci. China Inf. Sci. 60, 42501 (2017). https://doi.org/10.1007/s11432-015-0932-y

Download citation


  • entanglement
  • non-commutativity
  • non-binary stabilizer codes
  • quantum error-correction
  • quantum circuits
  • bounds


  • 纠缠
  • 非对易
  • 非二元稳定子码
  • 量子纠错
  • 量子线路
  • 码界