Global stabilization control of stochastic quantum systems



The global stabilization control of arbitrary eigenstates for finite dimensional stochastic quantum systems with non-diagonal free Hamiltonian and non-regular measurement operator is studied in this paper. We propose a switching feedback control law, in which a constant control is used to steer the system state to a convergence domain, and another control law designed based on Lyapunov stability theorem, is used to attract the states in the convergence domain to the desired target state. The convergence to an arbitrary target eigenstate from any initial state is strictly proved. Moreover, numerical simulation experiments on a three-dimensional stochastic quantum system are implemented to demonstrate the effectiveness of the proposed control.



研究了对具有非对角自由哈密顿量以及非规则测量算符的有限维随机量子系统任意本征态控制的全局稳定性. 提出了一种开关反馈控制律, 其中一个常量控制用来驱动系统状态到收敛域中; 另一个基于李雅谱诺夫稳定性定理设计出的控制律被用来吸引状态到收敛域中的期望目标态. 严格证明了从任意初始态到任意目标本征态的收敛性, 并且通过3维随机量子系统的数值仿真实验展现了所提控制方法的有效性.


  1. 1)


  2. 2)

    成功地推导出非规则的有限维随机量子系统任意本征态的全局稳定控制律, 并给出了严格证明;

  3. 3)

    所提出的控制方法简单、易于实现; 由所采用的控制理论所获得的控制律函数能够确保量子控制系统的状态以概率1转移并稳定到期望的目标状态, 对实际量子系统实验中调控性能的进一步提高具有重要意义.

This is a preview of subscription content, access via your institution.


  1. 1

    Abe T, Tsumura K. Generation of quantum entangled state via continuous feedback control. In: Proceedings of SICE Annual Conference, Chofu, 2008. 3305–3308

    Google Scholar 

  2. 2

    D’Alessandro D, Dahleh M. Optimal control of two-level quantum systems. IEEE Trans Automa Control, 2001, 46: 866–876

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Tsumura K. Global stabilization at arbitrary eigenstates of N-dimensional quantum spin systems via continuous feedback. In: Proceedings of the American Control Conference, Washington, 2008. 4148–4153

    Google Scholar 

  4. 4

    Ticozzi F, Schirmer S G, Wang X. Stabilizing quantum states by constructive design of open quantum dynamics. IEEE Trans Autom Control, 2010, 55: 2901–2905

    MathSciNet  Article  Google Scholar 

  5. 5

    Lou Y, Cong S. State transfer control of quantum systems on the Bloch Sphere. J Syst Sci Complex, 2011, 24: 506–518

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Rangelov A A, Vitanov N V. Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses. Phys Rev A, 2012, 85: 043407

    Article  Google Scholar 

  7. 7

    Zhang J, Liu Y X, Wu R B, et al. Quantum feedback: theory, experiments, and applications. 2014

    Google Scholar 

  8. 8

    Krstic M, Deng H. Stabilization of Nonlinear Uncertain Systems. Berlin: Springer-Verlag, 1999

    MATH  Google Scholar 

  9. 9

    Aharonov Y, Vaidman L. Properties of a quantum system during the time interval between two measurements. Phys Rev A, 1990, 41: 11–20

    MathSciNet  Article  Google Scholar 

  10. 10

    Belavkin V. Quantum stochastic calculus and quantum nonlinear filtering. J Multivar Anal, 1992, 44: 171–201

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    van Handel R, Stockton J K, Mabuchi H. Feedback control of quantum state reduction. IEEE Trans Autom Control, 2005, 50: 768–780

    MathSciNet  Article  Google Scholar 

  12. 12

    Jacobs K, Steck D A. A straightforward introduction to continuous quantum measurement. Contemp Phys, 2006, 47: 279–303

    Article  Google Scholar 

  13. 13

    Ge S S, Vu T L, Hang C C. Non-smooth Lyapunov function-based global stabilization for quantum filters. Automatica, 2012, 48: 1031–1044

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Belavkin V. Nondemolition Measurement and Control in Quantum Dynamical Systems. Vienna: Springer, 1985

    Google Scholar 

  15. 15

    Wiseman H. Quantum theory of continuous feedback. Phys Rev A, 1994, 49: 2133–2150

    Article  Google Scholar 

  16. 16

    Belavkin V. On the theory of controlling observable quantum systems. Autom Remote Control, 1983, 44: 178–188

    MathSciNet  MATH  Google Scholar 

  17. 17

    Belavkin V, Hirota O, Hudson R. Quantum Communications and Measurement. Vienna: Springer, 1995

    Book  MATH  Google Scholar 

  18. 18

    Bouten L, Edwards S, Belavkin V. Bellman equations for optimal feedback control of qubit states. J Phys B: Atomic Mol Opt Phys, 2005, 38: 151–160

    Article  Google Scholar 

  19. 19

    Bouten L, van Hande R. On the separation principle in QUANTUM CONTROL. In: Quantum Stochastics and Information. Singapore: World Scientific, 2008. 206–238

    Google Scholar 

  20. 20

    Mirrahimi M, van Handel R. Stabilizing feedback controls for quantum systems. SIAM J Control Optim, 2007, 46: 445–467

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Wang J, Wiseman H M. Feedback-stabilization of an arbitrary pure state of a two-level atom. Phys Rev A, 2001, 64: 063810

    Article  Google Scholar 

  22. 22

    Geremia J, Stockton J K, Mabuchi H. Real-time quantum feedback control of atomic spin-squeezing. Science, 2004, 304: 270–273

    Article  Google Scholar 

  23. 23

    Bouten L, Edwards S, Belavkin V, et al. An introduction to quantum filtering. SIAM J Control Optim, 2007, 46: 2199–2241

    MathSciNet  Article  MATH  Google Scholar 

  24. 24

    Tsumura K. Global stabilization of n-dimensional quantum spin systems via continuous feedback. In: Proceedings of the American Control Conference, New York City, 2007. 2119–2134

    Google Scholar 

  25. 25

    Altafini C, Ticozzi F. Almost global stochastic feedback stabilization of conditional quantum dynamics. 2008

    Google Scholar 

  26. 26

    Ge S S, Vu T L, Lee T H. Quantum measurement-based feedback control: a nonsmooth time delay control approach. SIAM J Control Optim, 2012, 50: 845–863

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Kushner H J. Stochastic Stability and Control. New York: Academic Press, 1967

    MATH  Google Scholar 

  28. 28

    Øksendal B. Stochastic Differential Equations: An Introduction With Applications. Berlin: Springer-Verlag, 1993

    MATH  Google Scholar 

  29. 29

    Mao X. Stochastic Differential Equations and Applications. Chichester: Horwood, 1998

    Google Scholar 

  30. 30

    Klenke A. Probability Theory. Berlin: Springer-Verlag, 2006

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shuang Cong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cong, S., Wen, J., Kuang, S. et al. Global stabilization control of stochastic quantum systems. Sci. China Inf. Sci. 59, 112502 (2016).

Download citation


  • eigenstate
  • stochastic quantum systems
  • global stabilization
  • switching control
  • Lyapunov stability theorem


  • 本征态
  • 随机量子系统
  • 全局稳定
  • 开关控制
  • 收敛性