Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Constructions of vectorial Boolean functions with good cryptographic properties




This is a preview of subscription content, log in to check access.


  1. 1

    Siegenthaler T. Correalation immunity of nonlinear combining functions for cryptographic applications. IEEE Trans Inf Theory, 1984, 30: 776–780

  2. 2

    Nyberg K. Perfect nonlinear S-boxes. In: Advances in Cryptology—EUROCRYPT. Berlin: Springer-Verlag, 1991. 547: 378–386

  3. 3

    Zhang M., Zheng Y L. Cryptographically resilient functions. IEEE Trans Inf Theory, 1997, 43: 1740–1747

  4. 4

    Chen L. Fu F W. On the construction of new resilient functions from old ones. IEEE Trans Inf Theory, 1999, 45: 2077–2082

  5. 5

    Johansson T. Pasalic E. A construction of resilient functions with high nonlinearity. IEEE Trans Inf Theory, 2003, 49: 494–501

  6. 6

    Zhang. G, Pasalic E. Constructions of resilient S-boxes with strictly almost optimal nonlinearity through disjoint linear codes. IEEE Trans Inf Theory, 2014, 60: 1638–1651

  7. 7

    Zhang. G, Pasalic E. Highly nonlinear balanced Sboxes with good differential properties. IEEE Trans Inf Theory, 2014, 60: 7970–7979

  8. 8

    Maitra S. Pasalic E. Further constructions of resilient Boolean functions with very high nonlinearity. IEEE Trans Inf Theory, 2002, 48: 1825–1834

Download references

Author information

Correspondence to Weiguo Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, W. Constructions of vectorial Boolean functions with good cryptographic properties. Sci. China Inf. Sci. 59, 119103 (2016).

Download citation


  • 向量布尔函数
  • 流密码
  • 非线性度
  • b平衡性
  • 相关免疫
  • 代数次数
  • 119103