Structural properties and generative model of non-giant connected components in social networks



Most previous studies have mainly focused on the analyses of one entire network (graph) or the giant connected components of networks. In this paper, we investigate the disconnected components (non-giant connected component) of some real social networks, and report some interesting discoveries about structural properties of disconnected components. We study three diverse, real networks and compute the significance profile of each component. We discover some similarities in the local structure between the giant connected component and disconnected components in diverse social networks. Then we discuss how to detect network attacks based on the local structure properties of networks. Furthermore, we propose an empirical generative model called iFriends to generate networks that follow our observed patterns.


前人对社交网络结构的研究往往关注于网络整体或者网络中的极大连通分量。在本文中, 基于真实的社交网络数据, 我们研究了社交网络中非极大连通分量的结构特征, 并发现了一些有趣的规律。对每个网络, 我们对每个连通分量计算其重要性剖面(Significance Profile)。我们发现在这些网络中, 极大连通分量和非极大连通分量之间存在着结构上的相似性。基于这个发现, 我们进一步利用网络的结构特征以检测网络攻击。最后, 我们提出了一个网络生成模型, 这个模型生成的网络能够观察到我们在这篇论文中发现的规律。

This is a preview of subscription content, access via your institution.


  1. 1

    Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology. SIGCOMM Comput Commun Rev, 1999, 29: 251–262

    Article  MATH  Google Scholar 

  2. 2

    Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th International Conference on Knowledge Discovery and Data Mining, Chicago, 2015. 177–187

    Google Scholar 

  3. 3

    Ahn Y Y, Han S, Kwak H, et al. Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on World Wide Web, Banff, 2007. 835–844

    Google Scholar 

  4. 4

    Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks. In: Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining, Philadelphia, 2006. 611–617

    Google Scholar 

  5. 5

    McGlohon M, Akoglu L, Faloutsos C. Weighted graphs and disconnected components: patterns and a generator. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, Las Vegas, 2008. 524–532

    Google Scholar 

  6. 6

    Niu J, Peng J, Tong C, et al. Evolution of disconnected components in social networks: patterns and a generative model. In: Proceedings of the 31st International Performance Computing and Communications Conference, Austin, 2012. 305–313

    Google Scholar 

  7. 7

    Yan G H. Peri-Watchdog: Hunting for hidden botnets in the periphery of online social networks. Comput Netw, 2013, 57: 540–555

    Article  Google Scholar 

  8. 8

    Shrivastava N, Majumder A, Rastogi R. Mining (social) network graphs to detect random link attacks. In: Proceedings of the 24th International Conference on Data Engineering, Cancun, 2008. 486–495

    Google Scholar 

  9. 9

    Leskovec J, Adamic L, Huberman B. The dynamics of viral marketing. ACM Trans Web, 2007, 1: 1–39

    Article  Google Scholar 

  10. 10

    Yan D, Cheng J, Lu Y, et al. Effective techniques for message reduction and load balancing in distributed graph computation. In: Proceedings of the 24th International Conference on World Wide Web, Florence, 2015. 1307–1317

    Google Scholar 

  11. 11

    Dong Y, Zhang J, Tang J, et al. CoupledLP: Link prediction in coupled networks. In: Proceedings of the 21th SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015. 199–208

    Google Scholar 

  12. 12

    Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. Knowl Inf Syst, 2105, 42: 181–213

    Article  Google Scholar 

  13. 13

    Broder A, Kumar R, Maghoul F, et al. Graph structure in the web. Comput Netw, 2000, 33: 309–320

    Article  Google Scholar 

  14. 14

    Ugander J, Backstrom L, Marlow C, et al. Structural diversity in social contagion. Proc Natl Acade Sci, 2012, 109: 5962–5966

    Article  Google Scholar 

  15. 15

    Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed networks. Science, 2004, 303: 1538–1542

    Article  Google Scholar 

  16. 16

    Carlson J M, Doyle J. Complexity and robustness. Proc Natl Acade Sci, 2002, 99: 2538–2545

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jianwei Niu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Wang, L. Structural properties and generative model of non-giant connected components in social networks. Sci. China Inf. Sci. 59, 123101 (2016).

Download citation


  • disconnected components
  • giant connected component
  • structural properties
  • significance profile
  • generative model


  • 极大连通分量
  • 非极大连通分量
  • 结构特征
  • 重要性剖面
  • 网络生成模型