Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The near-optimal maximum principle of impulse control for stochastic recursive system



Here, we discuss the near-optimality for a class of stochastic impulse control problems. The state process in our problem is given by forward-backward stochastic differential equations (FBSDEs) with two control components involved: the regular and impulse control. More specially, the impulse control is defined on a sequence of prescribed stopping times. A recursive cost functional is introduced and the maximum principle for its near-optimality (both necessary and sufficient conditions) is derived with the help of Ekeland’s principle and variational analysis. For illustration, one concrete example is studied with our maximum principle and the corresponding near-optimal control is characterized.



本文第一次较为系统的研究了关于随机递归系统的脉冲控制下的近似最大值原理, 获得了关于近似控制的几个可行的状态和输入的数学估计, 同时基于脉冲控制的特点, 讨论了精确最优控制和近似最优控制之间的差距的数学描述. 我们的状态可以用一个比较广泛的正倒向系统描述, 因此状态可以描述经济金融中广泛应用的随机递归效用. 由于需要处理倒向部分的状态变量, 所以我们的估计和分析同处理纯正向状态的讨论也有不同. 同时, 我们的工作也提供了一个基本视角可以用来讨论更为实际, 同时也更为困难的随机停止时间作为控制一部分输入的情况.

This is a preview of subscription content, log in to check access.


  1. 1

    Davis M H, Norman A. Portfolio selection with transaction costs. Math Oper Res, 1990, 15: 676–713

  2. 2

    Fudenberg D, Levine K. A dual-self model of impulse control. American Econ Rev, 2006, 96: 1449–1476

  3. 3

    Samuel M, David M, Laibson I, et al. Separate neural systems value immediate and delayed monetary rewards. Science, 2004, 306: 503–507

  4. 4

    Cadenillas A, Haussmann U G. The stochastic maximum principle for a singular control problem. Stoch Stoch Reports, 1994, 49: 211–237

  5. 5

    Wu Z, Zhang F. Stochastic maximum principle for optimal control problems of forward-backward systems involving impulse control. IEEE Trans Autom Control, 2011, 56: 1401–1406

  6. 6

    Wu Z, Zhang F. Maximum principle for stochastic recursive optimal control problems involving impulse controls. Abstract Appl Anal, 2012, 2012: 709682

  7. 7

    Yu Z. The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls. Automatica, 2012, 48: 2420–2432

  8. 8

    Zhou X Y. Stochastic near-optimal controls: necessary and sufficient conditions for near-optimality. SIAM J Control Optimiz, 1998, 36: 929–947

  9. 9

    Huang J, Li X, Wang G. Near-optimal control problems for linear forward-backward stochastic systems. Automatica, 2010, 46: 397–404

  10. 10

    Hui E, Huang J, Wang G. Near-optimal control for stochastic recursive problems. Syst Control Lett, 2011, 60: 161–168

  11. 11

    Meng Q, Shen Y. A revisit to stochastic near-optimal controls: the critical case. Syst Control Lett, 2015, 82: 79–85

  12. 12

    Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc, 1979, 1: 443–474

  13. 13

    Peng S. Backward stochastic differetial equations and applications to optimal control. Appl Math Optim, 1993, 27: 125–144

Download references

Author information

Correspondence to Detao Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, D. The near-optimal maximum principle of impulse control for stochastic recursive system. Sci. China Inf. Sci. 59, 112206 (2016).

Download citation


  • Ekeland’s principle
  • impulse control
  • maximum principle
  • near optimality


  • 近似最大值原理
  • 正倒向方程
  • 随机递归系统
  • 脉冲控制
  • 变分原理