Skip to main content
Log in

Competitive access in multi-RAT systems with regulated interference constraints

干扰约束条件下多无线接入系统中的竞争接入

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Deployment of multiple radio access technologies (RATs) at the same cell site enables the system to flexibly support different types of devices and services. Such multi-RAT systems call for an efficient utilization of the system resources as well as simplified management. In this paper, we take a user-centric approach and let each individual user equipment decide its own access strategy in a multi-RAT system with regulated interference constraints. The formulated problem is a generalized Nash equilibrium (GNE) problem. We show that there always exists a GNE but its uniqueness is not guaranteed. A closed form solution is provided to characterize a special class of the GNEs. We then propose a primal-dual algorithm with detailed convergence analysis for computing a GNE. The proposed algorithm may have practical implications in the design of multi-RAT systems.

摘要

创新点

在同一小区站点部署多种无线电接入技术能够灵活地支持不同类型的设备和服务, 但在这种多无线接入系统需要解决系统资源的有效使用和简化管理问题。 本文从用户的角度出发, 让每个用户设备决定自己在带有干扰约束的多无线接入系统的访问策略, 将该研究问题建模并抽象成一个广义的纳什均衡问题。 本文证明了广义纳什均衡点的存在性和非唯一性, 并对一类特殊的广义纳什均衡点给出了闭式解, 在此基础上进一步提出一个原始对偶优化算法并对其收敛性做了详细分析。 本文的分析研究和提出的算法对下一代移动网络多无线接入系统的设计具有极大启发意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ericsson. 5G Radio Access: Research and Vision. White Paper. http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf. 2013

  2. Andrews J G, Buzzi S, Choi W, et al. What will 5G be? IEEE J Sel Areas Commun, 2014, (32): 1065–1082

    Article  Google Scholar 

  3. Wireless World Research Forum Working Group C. Multi-RAT network architecture. White Paper. http://www.wwrf. ch/files/wwrf/content/files/publications/outlook/Outlook9.pdf. dy2013

  4. Hasib A, Fapojuwo A. Analysis of common radio resource management scheme for end-to-end QoS support in multiservice heterogeneous wireless networks. IEEE Trans Veh Tech, 2008, (57): 2426–2439

    Article  Google Scholar 

  5. Ong E H, Khan J Y. On optimal network selection in a dynamic multi-RAT environment. IEEE Commun Lett, 2010, (14): 217–219

    Article  Google Scholar 

  6. Mu˜noz P, Laselva D, Barco R, et al. Dynamic traffic steering based on fuzzy Q-learning approach in a multi-RAT multi-layer wireless network. Comput Netw, 2014, (71): 100–116

    Article  Google Scholar 

  7. Pollakis E, Cavalcante R L G, Stanczak S. Enhancing energy efficient network operation in multi-RAT cellular environments through sparse optimization. In: Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications, Darmstadt, 2013. 260–264

    Google Scholar 

  8. Chiasserini C F, Gribaudo M, Manini D. Traffic offloading/onloading in multi-RAT cellular networks. In: Proceedings of IEEE IFIP Wireless Days, Valencia, 2013. 1–7

    Google Scholar 

  9. Choi Y, Kim H, Han S W, et al. Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks. IEEE Trans Wirel Commun, 2010, (9): 3324–3329

    Article  Google Scholar 

  10. Lim G, Xiong C, Cimini L, et al. Energy-efficient resource allocation for OFDMA-based multi-RAT networks. IEEE Trans Wirel Commun, 2014, (13): 2696–2705

    Article  Google Scholar 

  11. Alsohaily A, Sousa E S. Unified radio access network operation for multi-radio access technology cellular systems. In: Proceedings of IEEE International Conference on Telecommunications, Lisbon, 2014. 32–36

    Google Scholar 

  12. Ma X, Sheng M, Zhang Y. Flow splitting for multi-RAT heterogeneous networks. In: Proceedings of IEEE Vehicular Technology Conference, Quebec City, 2012. 1–5

    Google Scholar 

  13. Yeh S P, Panah A Y, Himayat N, et al. QoS aware scheduling and cross-radio coordination in multi-radio heterogeneous networks. In: Proceedings of IEEE Vehicular Technology Conference, Las Vegas, 2013. 1–6

    Google Scholar 

  14. Facchinei F, Kanzow C. Generalized Nash equilibrium problems. 4OR-Q J Oper Res, 2007, (5): 173–210

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen M, Ponec M, Sengupta S, et al. Utility maximization in peer-to-peer systems. SIGMETRICS Perform Eval Rev, 2008, (36): 169–180

    Article  Google Scholar 

  16. Lin X, Lok T M. Distributed power control for one-to-many transmissions in Gaussian interference channels. IEEE Trans Commun, 2012, (60): 2363–2375

    Article  Google Scholar 

  17. Monderer D, Shapley L S. Potential games. Games Econ Behav, 1996, (14): 124–143

    Article  MathSciNet  MATH  Google Scholar 

  18. Boyd S, Lieven V. Convex Optimization. New York: Cambridge University Press, 2004. 241–249

    Google Scholar 

  19. Khalil H, Grizzle J. Nonlinear Systems. New Jersey: Prentice Hall, 2002. 237–242

    Google Scholar 

  20. Lin X, Andrews J G, Ghosh A, et al. An overview of 3GPP device-to-device proximity services. IEEE Commun Mag, 2014, (52): 40–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Zhang, Z. Competitive access in multi-RAT systems with regulated interference constraints. Sci. China Inf. Sci. 60, 022306 (2017). https://doi.org/10.1007/s11432-015-0625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-0625-3

Keywords

关键词

Navigation