Quantum private comparison based on quantum dense coding

基于量子超幂编码的量子隐私消息对比

Abstract

A serious problem in cloud computing is privacy information protection. This study proposes a new private comparison protocol using Einstein-Podolsky-Rosen (EPR) pairs. This protocol allows two parties to secretly compare their classical information. Quantum dense coding enables the comparison task to be completed with the help of a classical semi-honest center. A one-step transmission scheme and designed decoy photons can be used against various quantum attacks. The new protocol can ensure fairness, efficiency, and security. The classical semi-honest center cannot learn any information about the private inputs of the players. Moreover, this scheme can be easily generalized using the general EPR pairs in order to improve the transmission efficiency.

创新点

(1)本文设计一种新的公平、有效、安全的量子隐私对比协议。(2)与以前的诚实第三方和量子第三方不同, 本文的协议只依赖于经典的半诚实中心。(3)不像以前的协议可信第三方可能获取部分隐私信息, 本文中的经典半诚实中心不能获取对比双方的隐私消息。(4)本文的协议具有较好的扩展性, 可以拓展到基于多层量子态的隐私对比协议。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Fu Z J, Sun X M, Liu Q, et al. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun, 2015, 98: 190–200

    Article  Google Scholar 

  2. 2

    Li J, Li X L, Yang B, et al. Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forens Secur, 2015, 10: 507–518

    Article  Google Scholar 

  3. 3

    Ren Y J, Shen J, Wang J, et al. Mutual verifiable provable data auditing in public cloud storage. J Internet Technol, 2015, 16: 317–324

    Google Scholar 

  4. 4

    Xia Z H, Wang X H, Sun X M, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parall Distrib Syst, 2015, 27: 340–352

    Article  Google Scholar 

  5. 5

    Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175–179

    MATH  Google Scholar 

  6. 6

    Zhou C, Bao W S, Fu X Q. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci China Inf Sci, 2010, 53: 2485–2494

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Qian X D, He G Q, Zeng G H. Realization of error correction and reconciliation of continuous quantum key distribution in detail. Sci China Ser-F: Inf Sci, 2009, 52: 1598–1604

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  Google Scholar 

  10. 10

    Furusawa A, Søensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  Google Scholar 

  11. 11

    Bennett C H, DiVincenzo D P, Shor P Q, et al. Remote state preparation. Phys Rev Lett, 2001, 87: 077902

    Article  Google Scholar 

  12. 12

    Luo M X, Deng Y, Chen X B, et al. The faithful remote preparation of general quantum states. Quantum Inform Process, 2013, 12: 279–294

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    MathSciNet  Article  Google Scholar 

  14. 14

    Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  Google Scholar 

  15. 15

    Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  Google Scholar 

  17. 17

    Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101–103

    Article  MATH  Google Scholar 

  18. 18

    Xu J, Chen H W, Liu W J, et al. Selection of unitary operations in quantum secret sharing without entanglement. Sci China Inf Sci, 2011, 54: 1837–1842

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Wang T Y, Wen Q Y. Security of a kind of quantum secret sharing with single photons. Quantum Inform Comput, 2011, 11: 434–443

    MathSciNet  MATH  Google Scholar 

  20. 20

    Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  Google Scholar 

  21. 21

    Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  Google Scholar 

  22. 22

    Wang C, Deng F-G, Li Y-S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  Google Scholar 

  23. 23

    Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304

    Article  Google Scholar 

  24. 24

    Liu Z H, Chen H W, Liu W J, et al. Deterministic secure quantum communication without unitary operation based on highdimensional entanglement swapping. Sci China Inf Sci, 2012, 55: 360–367

    MathSciNet  Article  Google Scholar 

  25. 25

    Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China Phys Mech Astro, 2014, 57: 1238–1243

    Article  Google Scholar 

  26. 26

    Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China Phys Mech Astro, 2014, 57: 1696–1702

    Article  Google Scholar 

  27. 27

    Qu Z G, Chen X B, Zhou X J, et al. Novel quantum steganography with large payload. Opt Commun, 2010, 283: 4782–4786

    Article  Google Scholar 

  28. 28

    Qu Z G, Chen X B, Luo M X, et al. A large payload of novel quantum steganography with χ-type entangled state. Opt Commun, 2011, 284: 2075–2082

    Article  Google Scholar 

  29. 29

    Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China Phys Mech Astro, 2013, 56: 1745–1754

    Article  Google Scholar 

  30. 30

    Yao A C. Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, Chicago, 1982. 160–164

    Google Scholar 

  31. 31

    Yao A C. How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Toronto, 1986. 162–167

    Google Scholar 

  32. 32

    Boudot F, Schoenmakers B, Traore J. A fair and efficient solution to the socialist millionaires problem. Discret Appl Math, 2001, 111: 23–36

    MathSciNet  Article  MATH  Google Scholar 

  33. 33

    Lo H K. Insecurity of quantum secure computations. Phys Rev A, 1997, 56: 1154–1162

    Article  Google Scholar 

  34. 34

    Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2009, 42: 055305

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Yang Y G, Cao W F, Wen Q Y. Secure quantum private comparison. Phys Scr, 2009, 80: 065002

    Article  MATH  Google Scholar 

  36. 36

    Lin J, Tseng H Y, Hwang T. Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt Commun, 2011, 284: 2412–2414

    Article  Google Scholar 

  37. 37

    Chen X B, Xu G, Niu X X, et al. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun, 2010, 283: 1561–1565

    Article  Google Scholar 

  38. 38

    Liu W J, Liu C, Wang H B, et al. Secure quantum private comparison of equality based on asymmetric W state. Int J Theor Phys, 2014, 53: 1804–1813

    Article  MATH  Google Scholar 

  39. 39

    Tseng H Y, Lin J, Hwang T. New quantum private comparison protocol using EPR pairs. Quantum Inf Proc, 2012, 11: 373–384

    MathSciNet  Article  MATH  Google Scholar 

  40. 40

    Liu W J, Liu C, Chen H W, et al. Cryptanalysis and improvement of quantum private comparison protocol based on bell entangled states. Commun Theor Phys, 2014, 62: 210–214

    MathSciNet  Article  MATH  Google Scholar 

  41. 41

    Liu W, Wang Y B, Jiang Z T, et al. A protocol for the quantum private comparison of equality with χ-type state. Int J Theor Phys, 2012, 51: 69–77

    MathSciNet  Article  MATH  Google Scholar 

  42. 42

    Xu G A, Chen X B, Wei Z H, et al. An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int J Quantum Inf, 2012, 10: 1250045

    MathSciNet  Article  Google Scholar 

  43. 43

    Liu W, Wang Y B, Jiang Z T. An efficient protocol for the quantum private comparison of equality with W state. Opt Commun, 2011, 284: 3160–3163

    Article  Google Scholar 

  44. 44

    Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Proc, 2013, 12: 887–897

    MathSciNet  Article  MATH  Google Scholar 

  45. 45

    Li Y B, Qin S J, Yuan Z, et al. Quantum private comparison against decoherence noise. Quantum Inf Proc, 2013, 12: 2191–2205

    MathSciNet  Article  MATH  Google Scholar 

  46. 46

    Zhang W W, Zhang K J. Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf Proc, 2013, 12: 1981–1990

    MathSciNet  Article  Google Scholar 

  47. 47

    Chen X B, Su Y, Niu X X, et al. Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf Proc, 2013, 12: 2871–2875

    MathSciNet  Article  Google Scholar 

  48. 48

    Zukowski M, Zeilinger A, Horne M A, et al. Event-ready-detectors Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  Google Scholar 

  49. 49

    Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894

    MathSciNet  Article  MATH  Google Scholar 

  50. 50

    Barencoa A, Ekerta A K. Dense coding based on quantum entanglement. J Mod Opt, 1995, 42: 1253–1259

    Article  Google Scholar 

  51. 51

    Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502

    Article  Google Scholar 

  52. 52

    Shadman Z, Kampermann H, Macchiavello C, et al. Optimal super dense coding over noisy quantum channels. New J Phys, 2010, 12: 073042

    Article  Google Scholar 

  53. 53

    Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  MATH  Google Scholar 

  54. 54

    Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2006, 73: 049901

    Article  Google Scholar 

  55. 55

    Qin S J, Wen Q Y, Zhu F C. Cryptanalysis of multiparty quantum secret sharing of quantum state using entangled states. Chin Phys Lett, 2008, 25: 3551–3554

    Article  Google Scholar 

  56. 56

    Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  Google Scholar 

  57. 57

    Yang C W, Hwang T, Luo Y P. Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf Proc, 2013, 12: 109–117

    MathSciNet  Article  MATH  Google Scholar 

  58. 58

    Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  Google Scholar 

  59. 59

    Sheng Y B, Zhou L. Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep, 2015, 5: 7815

    Article  Google Scholar 

  60. 60

    Sheng Y B, Zhou L. Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys Lett, 2014, 11: 085203

    Article  Google Scholar 

  61. 61

    Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 2013, 88: 022302

    Article  Google Scholar 

  62. 62

    Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046–2052

    Article  Google Scholar 

  63. 63

    Zhao Z, Yang T, Chen Y A, et al. Experimental realization of entanglement concentration and a quantum repeater. Phys Rev Lett, 2003, 90: 207901

    Article  Google Scholar 

  64. 64

    Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307

    Article  Google Scholar 

  65. 65

    Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302

    Article  Google Scholar 

  66. 66

    Zhao Z, Pan J W, Zhan M S. Practical scheme for entanglement concentration. Phys Rev A, 2001, 64: 014301

    Article  Google Scholar 

  67. 67

    Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325

    Article  Google Scholar 

  68. 68

    Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301

    Article  Google Scholar 

  69. 69

    Luo M X, Chen X B, Yang Y X, et al. Hyperentanglement concentration for n-photon 2n-qubit systems with linear optics. J Opt Soc Amer B-Opt Phys, 2014, 31: 67–74

    Article  Google Scholar 

  70. 70

    Luo M X, Li H R, Wang X. Efficient atomic and photonic multipartite W state concentration via photonic faraday rotation. Eur Phys J D, 2014, 68: 190

    Article  Google Scholar 

  71. 71

    Chrzanowski H M, Walk N, Assad S M, et al. Measurement-based noiseless linear amplification for quantum communication. Nat Photon, 2014, 8: 333–338

    Article  Google Scholar 

  72. 72

    Eleftheriadou E, Barnett S M, Jeffers J. Quantum optical state comparison amplifier. Phys Rev Lett, 2013, 111: 213601

    Article  Google Scholar 

  73. 73

    Kocsis S, Xiang G Y, Ralph T C, et al. Heralded noiseless amplification of a photon polarization qubit. Nat Phys, 2013, 9: 23–28

    Article  Google Scholar 

  74. 74

    Zhou L, Sheng Y B. Recyclable amplification protocol for the single-photon entangled state. Laser Phys Lett, 2015, 12: 045203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61303039, 61373131), Natural Science Foundation of Shandong Province (Grant No. ZR2015FL024), Fundamental Research Funds for the Central Universities (Grant No. 2682014CX095), PAPD and CICAEET Funds, Open Foundation of Jiangsu Engineering Center of Network Monitoring (Nanjing University of Information Science & Technology) (Grant No. KJR1502), Open Foundation of China-USA Computer Science Center (Grant No. KJR16012), and Science Foundation Ireland (SFI) under the International Strategic Cooperation Award (Grant No. SFI/13/ISCA/2845).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Qu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Luo, M., Li, H. et al. Quantum private comparison based on quantum dense coding. Sci. China Inf. Sci. 59, 112501 (2016). https://doi.org/10.1007/s11432-015-0616-9

Download citation

Keywords

  • private comparison
  • multiparty secure computation
  • classical semi-honesty center
  • quantum dense coding
  • general EPR pair

关键词

  • 隐私消息对比
  • 多方安全计算
  • 经典半诚实中心
  • 量子超幂编码
  • 一般EPR对