Cognitive frequency diverse array radar with symmetric non-uniform frequency offset

Abstract

Frequency diverse array (FDA) radar with uniform inter-element frequency offset generates a beam pattern with maxima at multiple range and angle values. Multiple maxima property allows interferers located at any of the maxima to affect the target-returns. As a result the signal to interference noise ratio (SINR) and probability of detection decreases. In this paper, we propose a cognitive uniformly-spaced FDA with non-uniform but symmetric frequency offsets to achieve a single maximum beam pattern at the target position. Moreover, these non-uniform frequency offsets are calculated using well known mu-law formulae. The design sharpens or broadens the transmitted beam pattern based on the receiver feedback to achieve a better detection probability and an improved SINR as compared to the previous designs. The performance is also analyzed by considering the Cramer-Rao lower bound (CRLB) on target angle and range estimation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Antonik P, Wicks M C, Griffiths H D, et al. Frequency diverse array radars. In: Proceedings of IEEE Conference on Radar, Verona, 2006. 215–17

    Google Scholar 

  2. 2

    Antonik P. An investigation of a frequency diverse array. Dissertation for Ph.D. Degree. Bloomsbury: University College, 2009

    Google Scholar 

  3. 3

    Huang J J, Tong K F, Baker C J. Frequency diverse array with beam scanning feature. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Diego, 2008. 1–

    Google Scholar 

  4. 4

    Secmen M, Demir S, Hizal A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle. In: Proceedings of IEEE Conference on Radar, Boston, 2007. 427–30

    Google Scholar 

  5. 5

    Wang W Q. Phased-MIMO radar with frequency diversity for range-dependent beamforming. IEEE Sens J, 2013, 13: 1320–328

    Article  Google Scholar 

  6. 6

    Zhuang L, Liu X Z. Precisely beam steering for frequency diverse arrays based on frequency offset selection. In: Proceedings of International Radar Conference “Surveillance for a Safer World– Bordeaux, 2009. 1–

    Google Scholar 

  7. 7

    Chen Y G, Li Y T, Wu Y H, et al. Research on the linear frequency diverse array performance. In: Proceedings of IEEE 10th International Conference on Signal Processing, Beijing, 2010. 2324–327

    Google Scholar 

  8. 8

    Wang W Q, Shao H, Cai J. Range-angle-dependent beamforming by frequency diverse array antenna. Int J Antenn Propag, 2012, 2012: 760489

    Google Scholar 

  9. 9

    Shao H, Li J, Chen H, et al. Adaptive frequency offset selection in frequency diverse array radar. IEEE Antenn Wirel Propag Lett, 2014, 13: 1405–408

    Article  Google Scholar 

  10. 10

    Khan W, Qureshi I M. Frequency diverse array radar with time-dependent frequency offset. IEEE Antenn Wirel Propag Lett, 2014, 13: 758–61

    Article  Google Scholar 

  11. 11

    Wang W Q, So H C, Shao H Z. Nonuniform frequency diverse array for range-angle imaging of targets. IEEE Sens J, 2014, 14: 2469–474

    Article  Google Scholar 

  12. 12

    Khan W, Qureshi I M, Saeed S. Frequency diverse array radar with logarithmically increasing frequency offset. IEEE Antenn Wirel Propag Lett, 2015, 99: 1–

    Google Scholar 

  13. 13

    Sammartino P F, Baker C J, Griffiths H D. Frequency diverse MIMO techniques for radar. IEEE Trans Aerosp Electron Syst, 2013, 49: 201–22

    Article  Google Scholar 

  14. 14

    Haykin S. Cognitive radar: a way of the future. IEEE Signal Process Mag, 2006. 23: 30–0

    Article  Google Scholar 

  15. 15

    Xue Y. Cognitive radar: theory and simulations. Dissertation for Ph.D. Degree. Hamilton: McMaster University, 2010

    Google Scholar 

  16. 16

    Haykin S, Zia A, Xue Y, et al. Control-theoretic approach to tracking radar: first step towards cognition. Digital Signal Process, 2011, 21: 576–85

    Article  Google Scholar 

  17. 17

    Haykin S, Xue Y, Setoodeh P. Cognitive radar: step toward bridging the gap between neuroscience and engineering. Proc IEEE, 2012, 100: 3102–130

    Article  Google Scholar 

  18. 18

    Osman L, Sfar I, Gharsallah A. The application of high-resolution methods for DOA estimation using a linear antenna array. Int J Microw Wirel Tech, 2015, 7: 87–4

    Article  Google Scholar 

  19. 19

    Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice. Englewood Cliffs: Prentice-Hall, 1993

    Google Scholar 

  20. 20

    Kaneko H. A unified formulation of segment companding laws and synthesis of codecs and digital compandors. Bell Syst Tech J, 1970, 49: 1555–588

    Article  Google Scholar 

  21. 21

    Huang X, Lu J, Zheng J, et al. Reduction of peak-to average power ratio of OFDM signals with companding transform. Electron Lett, 2001, 37: 506–07

    Article  Google Scholar 

  22. 22

    Huang X, Lu J H, Zheng J L, et al. Companding transform for reduction in peak-to average power ratio of OFDM signals. IEEE Trans Wirel Commun, 2004. 3: 2030–039

    Article  Google Scholar 

  23. 23

    Khan S U, Qureshi I M, Zaman F, et al. Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation. Progress Electrom Res B, 2013, 52: 165–84

    Article  Google Scholar 

  24. 24

    King D, Packard R, Thomas R. Unequally-spaced, broad-band antenna arrays. IRE Trans Antenn Propag, 1960, 8: 380–84

    Article  Google Scholar 

  25. 25

    Harrington R F. Sidelobe reduction by nonuniform element spacing. IRE Trans Antenn Propag, 1961, 9: 187–92

    Article  Google Scholar 

  26. 26

    Willey R. Space tapaering of linear and planar arrays. IRE Trans Antenn Propag, 1962, 10: 369–77

    Article  Google Scholar 

  27. 27

    Basit A, Qureshi I M, Khan W, et al. Hybridization of cognitive radar and phased array radar having low probability of intercept transmit beamforming. Int J Antenn Propag, 2014, 2014: 129172

    Article  Google Scholar 

  28. 28

    Trees H L V. Optimum Array Processing. New York: Wiley, 2002

    Google Scholar 

  29. 29

    Wang W Q, Shao H. Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE J Sele Topics Signal Process, 2014. 8: 106–14

    MathSciNet  Article  Google Scholar 

  30. 30

    Wang Y, Wang W Q, Chen H, et al. Optimal frequency diverse subarray design with Cram′er-Rao lower bound minimization. IEEE Antenn Wirel Propag Lett, 2015, 14: 1188–191

    Article  Google Scholar 

  31. 31

    Haykin S. Neural Networks and Learning Machines. 3rd ed. Englewood Cliffs: Prentice-Hall, 2009

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdul Basit.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Qureshi, I.M., Khan, W. et al. Cognitive frequency diverse array radar with symmetric non-uniform frequency offset. Sci. China Inf. Sci. 59, 102314 (2016). https://doi.org/10.1007/s11432-015-0503-x

Download citation

Keywords

  • cognitive radar
  • frequency diverse array
  • non-uniform frequency offset
  • range-angle beam forming