Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Robust state estimation for uncertain linear systems with random parametric uncertainties

存在随机参数不确定性的线性系统鲁棒状态估计

  • 121 Accesses

  • 3 Citations

Abstract

In this paper, we investigate state estimations of a dynamical system with random parametric uncertainties which may arbitrarily affect a plant state-space model. A robust estimator is derived based on expectation minimization of estimation errors. An analytic solution similar to that of the well-known Kalman filter is derived for this new robust estimator which can be realized recursively with a comparable computational complexity. Under some weak assumptions, it is proved that this estimator converges to a stable system, the covariance matrix of estimation errors is bounded, and the estimation is asymptotically unbiased. Numerical simulations show that the obtained robust filter has an estimation accuracy comparable to other robust estimators and can be applied in a wider range.

创新点

本文研究了存在随机参数不确定性时线性时变系统的鲁棒状态估计问题, 参数不确定性可以以任意方式影响系统模型。论文提出的算法基于卡尔曼滤波器和正则最小二乘之间的关系, 同时考虑了随机的模型误差的影响。提供了该鲁棒状态估计器的解析表达式, 可以递归实现, 其与标准卡尔曼滤波器有相似的形式和相当的计算复杂度。证明了在一定的假设条件下, 该鲁棒状态估计器收敛到一个稳定的系统, 估计误差的协方差矩阵是有界的, 且估计器是渐近无偏的(估计误差的期望以指数收敛到0)。数值仿真例说明该鲁棒状态估计器拥有与其它鲁棒估计器相近的估计性能, 且不需要设计参数的优化, 而仅仅需要离线计算若干个矩阵, 因此有更广泛的应用。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kailath T, Sayed A H, Hassibi B. Linear Estimation. Upper Saddle River: Prentice Hall, 2000

  2. 2

    Sayed A H. A framework for state-space estimation with uncertain models. IEEE Trans Automat Control, 2001, 46: 998–1013

  3. 3

    Zhou T. Sensitivity penalization based robust state estimation for uncertain linear systems. IEEE Trans Automat Control, 2010, 55: 1018–1024

  4. 4

    Simon D. Optimal State Estimation: Kalman, H1 and Nonlinear Approaches. Hoboken: John Wiley & Sons, 2006

  5. 5

    Nagpal K M, Khargonekar P P. Filtering and smoothing in an H1-setting. IEEE Trans Automat Control, 1991, 36: 151–166

  6. 6

    Basar T, Bernhard P. H1-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Boston: Birkhäuser, 2009

  7. 7

    Fu M Y, de Souza C E, Xie L H. H1 estimation for uncertain systems. Int J Robust Nonlinear Contr, 1992, 2: 87–105

  8. 8

    Xie L H, de Souza C E, Fu M Y. H1 estimation discrete-time linear uncertain systems. Int J Robbust Nonlinear Contr, 1991, 1: 111–123

  9. 9

    Zhang W H, Chen B S, Tseng C S. Robust H1 filtering for nonlinear stochastic systems. IEEE Trans Signal Process, 2005, 53: 589–598

  10. 10

    Garulli A, Vicino A, Zappa G. Conditional central algorithms for worst case set-membership identificaion and filtering. IEEE Trans Automat Control, 2000, 45: 14–23

  11. 11

    Jain B N. Guaranteed error estimation in uncertain systems. IEEE Trans Automat Control, 1975, 20: 230–232

  12. 12

    Huang Y, Chen Z J, Wei C. Least trace extended set-membership filter. Sci China Inf Sci, 2010, 53: 258–270

  13. 13

    Bolzern P, Colaneri P, De Nicolao G. Optimal design of robust predictors for linear discrete-time systems. Syst Control Lett, 1995, 26: 25–31

  14. 14

    Mahmoud M S, Shi P. Optimal guaranteed cost filtering for Markovian jump discrete-time systems. Math Probl Eng, 2004, 2004: 33–48

  15. 15

    Tadmor G, Mirkin L. H1 control and estimation with preview—Part I: matrix ARE solutions in continuous time. IEEE Trans Automat Control, 2005, 50: 19–28

  16. 16

    Xu H, Mannor S. A Kalman filter design based on the performance/robustness tradeoff. IEEE Trans Automat Control, 2009, 54: 1171–1175

  17. 17

    Ishihara J Y, Terra M H, Cerri J P. Optimal robust filtering for systems subject to uncertainties. Automatica, 2015, 52: 111–117

  18. 18

    Neveux P, Blanco E, Thomas G. Robust filtering for linear time invariant continuous systems. IEEE Trans Signal Process, 2007, 55: 4752–4757

  19. 19

    Zhou T. Robust state estimation using error sensitivity penalizing. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, 2008. 2563–2568

  20. 20

    Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo Method. New York: John Wiley & Sons, 2011

  21. 21

    Zhou T, Liang H Y. On asymptotic behaviors of a sensitivity penalization based robust state estimator. Syst Control Lett, 2011, 60: 174–180

Download references

Author information

Correspondence to Huabo Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhou, T. Robust state estimation for uncertain linear systems with random parametric uncertainties. Sci. China Inf. Sci. 60, 012202 (2017). https://doi.org/10.1007/s11432-015-0327-x

Download citation

Keywords

  • robustness
  • state estimation
  • recursive estimation
  • parametric uncertainty
  • regularized leastsquares

关键词

  • 鲁棒
  • 状态估计
  • 回归估计
  • 参数不确定性
  • 正则最小二乘