Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Iterative spherical simplex unscented particle filter for CNS/Redshift integrated navigation system

天文/红移组合导航系统中的迭代球形单形无迹粒子滤波

  • 82 Accesses

  • 5 Citations

Abstract

We propose an improved Unscented Particle Filter (UPF) algorithm for the Celestial Navigation System/Redshift (CNS/Redshift) integrated navigation system. The algorithm adopts the iterated spherical simplex unscented transformation rather than the traditional unscented transformation. The navigation per- formance of the proposed algorithm is assessed by several indexes. Simulation results show that the proposed UPF algorithm has advantages over the traditional UPF algorithm in terms of computation burden, navigation accuracy, and numerical stability.

创新点

本文提出了一种在天文/红移组合导航系统中的改进的无迹粒子滤波算法。我们引入球形单形无迹变换来取代传统的无迹变换,与此同时采用迭代策略。接下来分析了这种改进的无迹粒子滤波算法在天文/红移组合导航系统中的导航性能。仿真结果表明改进的算法具有相对较低的计算负担,更高的导航精度和更好的数值稳定性。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Ning X L, Fang J C. An autonomous celestial navigation method for {LEO} satellite based on unscented Kalman filter and information fusion. Aerosp Sci Technol, 2007, 11: 222–228

  2. 2

    Ning X L, Fang J C. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler infor- mation fusion. Meas Sci Technol, 2008, 19: 095203

  3. 3

    Ning X L, Fang J C. A new autonomous celestial navigation method for the lunar rover. Robot Auton Syst, 2009, 57: 48–54

  4. 4

    Zhuang Y, Gu MW, Wang W, et al. Multi-robot cooperative localization based on autonomous motion state estimation and laser data interaction. Sci China Inf Sci, 2010, 53: 2240–2250

  5. 5

    St-Pierre M, Gingras D. Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. In: Proceedings of IEEE Intelligent Vehicles Symposium, Parma, 2004. 831–835

  6. 6

    Huang Y, Chen Z J, Wei C. Least trace extended set-membership filter. Sci China Inf Sci, 2010, 53: 258–270

  7. 7

    Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proc IEEE, 2004, 92: 401–422

  8. 8

    Wang J L, Feng X Y, Zhao L Q, et al. Unscented transformation based robust Kalman filter and its applications in fermentation process. Chin J Chem Eng, 2010, 18: 412–418

  9. 9

    Morelande M R, Moran B. An unscented transformation for conditionally linear models. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, 2007. 3: 1417–1420

  10. 10

    Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process, 2002, 50: 174–188

  11. 11

    Wang L, Wan J W, Liu Y H, et al. Cooperative localization method for multi-robot based on pf-ekf. Sci China Ser-F: Inf Sci, 2008, 51: 1125–1137

  12. 12

    van der Merwe R, Doucet A, de Freitas N, et al. The unscented particle filter. In: Proceedings of Conference on Neural Information Processing Systems, Denver, 2000. 584–590

  13. 13

    Julier S J. The spherical simplex unscented transformation. In: Proceedings of American Control Conference, Denver, 2003. 3: 2430–2434

  14. 14

    He W, Ge S S. Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance. IEEE Trans Control Syst Technol, 2012, 20: 48–58

  15. 15

    He W, He X, Ge S S. Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans Mechatron, 2016, 21: 254–265

  16. 16

    Zhan R H, Wan J W. Iterated unscented Kalman filter for passive target tracking. IEEE Trans Aerosp Electron Syst, 2007, 43: 1155–1163

  17. 17

    He W, Ge S S, Huang D Q. Modeling and vibration control for a nonlinear moving string with output constraint. IEEE/ASME Trans Mechatron, 2015, 20: 1886–1897

  18. 18

    Zhang S, He W, Huang D Q. Active vibration control for a flexible string system with input backlash. IET Control Theory Appl, 2016, 10: 800–805

  19. 19

    He W, Ge S S, Li Y N, et al. Neural network control of a rehabilitation robot by state and output feedback. J Intell Robot Syst, 2015, 80: 15–31

  20. 20

    Song T T, Ning X L, Yu W B. A new autonomous celestial navigation method for Mars probe. In: Proceedings of 6th International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic technology, and Artificial Intelligence, Beijing, 2006. 63574N

  21. 21

    Li P, Cui H T, Cui P Y. Upf based autonomous navigation scheme for deep space probe. J Syst Eng Electron, 2008, 19: 529–536

  22. 22

    Valarmathi J, Emmanuel D S, Christopher S. Velocity tracking based on interpolated adaptive Doppler filter. In: Proceedings of 15th International Conference on Information Fusion (FUSION), Singapore, 2012. 1511–1518

  23. 23

    Krysik P, Wielgo M, Misiurewicz J, et al. Doppler-only tracking in GSM-based passive radar. In: Proceedings of 17th International Conference on Information Fusion (FUSION), Salamanca, 2014. 1–7

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2014CB744206). The authors would like to thank the anonymous reviewers for their constructive comments in improving the quality and presentation of this paper.

Author information

Correspondence to Wei He.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, K., Zhao, G., Li, X. et al. Iterative spherical simplex unscented particle filter for CNS/Redshift integrated navigation system. Sci. China Inf. Sci. 60, 042201 (2017). https://doi.org/10.1007/s11432-015-0189-9

Download citation

Keywords

  • CNS/Redshift
  • navigation system
  • UPF
  • spherical simplex
  • iteration

关键词

  • 天文/红移
  • 导航系统
  • 无迹粒子滤波
  • 球形单形
  • 迭代