Second-order sliding mode attitude controller design of a small-scale helicopter



In this paper, the attitude control of a small-scale helicopter is investigated. The main rotor flapping dynamics is explicitly explored to improve the control performance. A two-layer control architecture is adopted: the inner loop controller is designed combining second-order sliding mode control with extended state observer to control the angular rates and yield good robustness properties with respect to model uncertainties; the outer loop controller is used to control the attitude. Experimental results show that the proposed controller yields excellent performance and robustness.



本文将小型直升机主旋翼的挥舞动态显式地纳入到了姿态控制器设计当中, 并采用二阶滑模与扩张状态观测器相结合的方法设计了小型直升机非线性鲁棒姿态控制器. 为提高控制性能, 本文采用集总挥舞模型对挥舞动态进行近似描述, 并通过状态变化克服了挥舞角无法测量的问题. 考虑挥舞动态的旋转动力学呈现出二阶特性, 因此, 本文 采用二阶滑模与扩张状态观测器相结合的方法设计鲁棒控制器. 一方面, 滑模控制能够处理扩张状态观测器未能估计补偿的残余不确定性;另一方面, 扩张状态观测器的估计 补偿作用能够有效减小滑模控制中切换项的幅值.

This is a preview of subscription content, access via your institution.


  1. 1

    Sanada Y, Torii T. Aerial radiation monitoring around the fukushima dai-ichi nuclear power plant using an unmanned helicopter. J Environ Radioact, 2014, 139: 294–299

    Article  Google Scholar 

  2. 2

    Siebert S, Teizer J. Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom Constr, 2014, 41: 1–14

    Article  Google Scholar 

  3. 3

    Maza I, Kondak K, Bernard M, et al. Multi-UAV cooperation and control for load transportation and deployment. J Intell Robot Syst, 2010, 57: 417–449

    Article  MATH  Google Scholar 

  4. 4

    Maza I, Caballero F, Capitán J, et al. Experimental results in multi-UAV coordination for disaster management and civil security applications. Int J Syst Sci, 2011, 61: 563–585

    Google Scholar 

  5. 5

    Casbeer D W, Kingston D B, Beard A W, et al. Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int J Syst Sci, 2006, 37: 351–360

    Article  MATH  Google Scholar 

  6. 6

    Bernard M, Kondak K, Hommel G, et al. Attitude control optimization for a small-scale unmanned helicopter. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, 2000. AIAA-2000-4059

    Google Scholar 

  7. 7

    Brown A, Garcia R. Concepts and validation of a small-scale rotorcraft proportional integral derivative (PID) controller in a unique simulation environment. Int J Syst Sci, 2009, 54: 511–532

    Google Scholar 

  8. 8

    Gavrilets V. Autonomous aerobatic maneuvering of miniature helicopters. Dissertation for Doctoral Degree. Massachusetts Institute of Technology, 2003

    Google Scholar 

  9. 9

    Gavrilets V, Mettler B, Feron E. Human-inspired control logic for automated maneuvering of miniature helicopter. J Guid Control Dyn, 2004, 27: 752–759

    Article  Google Scholar 

  10. 10

    Cai G W, Chen B M, Dong X X, et al. Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics, 2011, 21: 803–820

    Article  Google Scholar 

  11. 11

    La Civita M. Integrated modeling and robust control for full-envelope flight of robotic helicopter. Dissertation for Doctoral Degree. Carnegie Mellon University, 2002

    Google Scholar 

  12. 12

    Pota H R, Ahmed B, Garratt M. Velocity control of a UAV using backstepping control. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, 2006. 5894–5899

    Google Scholar 

  13. 13

    Ahmed B, Pota H R, Garratt M. Rotary wing UAV position control using backstepping. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007. 1957–1962

    Google Scholar 

  14. 14

    Ahmed B, Pota H R. Flight control of a rotary wing UAV using adaptive backstepping. In: Proceedings of IEEE International Conference on Control and Automation, Christchurch, 2009. 1780–1785

    Google Scholar 

  15. 15

    Lee C-T, Tsai C-C. Improvement in trajectory tracking control of a small scale helicopter via backstepping. In: Proceedings of International Conference on Mechatronics, Kumamoto, 2007. 1–6

    Google Scholar 

  16. 16

    Lee C-T, Tsai C-C. Nonlinear adaptive aggressive control using recurrent neural networks for a small scale helicopter. Mechatronics, 2010, 20: 474–484

    MathSciNet  Article  Google Scholar 

  17. 17

    Li P, Zheng Z-Q. Robust adaptive second-order sliding-mode control with fast transient performance. IET Control Theory A, 2012, 6: 305–312

    MathSciNet  Article  Google Scholar 

  18. 18

    Li P. Research and application of traditional and higher-order sliding mode control (in Chinese). Dissertation for Doctoral Degree. National University of Defense Technology, 2011

    Google Scholar 

  19. 19

    Xia Y Q, Zhu Z, Fu M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans Ind Electron, 2011, 58: 647–659

    Article  Google Scholar 

  20. 20

    Xu Y J. Multi-timescale nonlinear robust control for a miniature helicopter. IEEE Trans Aerosp Electron Syst, 2010, 46: 656–671

    Article  Google Scholar 

  21. 21

    Lei X S, SamGe S Z, Fang J C. Adaptive neural network control of small unmanned aerial rotorcraft. Int J Syst Sci, 2014, 75: 331–341

    Google Scholar 

  22. 22

    Song B Q, Liu Y H, Fan C Z. Feedback linearization of the nonlinear model of a small-scale helicopter. J Control Theory Appl, 2010, 8: 301–308

    MathSciNet  Article  Google Scholar 

  23. 23

    Cai G W, Chen B M, Peng K M, et al. Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans Ind Electron, 2008, 55: 3426–3434

    Article  Google Scholar 

  24. 24

    Liu C J, Chen W H, Andrews J. Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng Pract, 2012, 20: 258–268

    Article  Google Scholar 

  25. 25

    Liu C J, Chen W H, Andrews J. Piecewise constant model predictive control for autonomous helicopters. Robot Auton Syst, 2011, 59: 571–579

    Article  Google Scholar 

  26. 26

    Mettler B. Identification Modeling and Characteristics of Miniature Rotorcraft. New York: Springer US, 2003

    Google Scholar 

  27. 27

    Zhou H B. Small-scale unmanned helicopter modeling and controller design (in Chinese). Dissertation for Doctoral Degree. South China University of Technology, 2011

    Google Scholar 

  28. 28

    Tang S, Zheng Z Q, Qian S K, et al. Nonlinear system identification of a small-scale unmanned helicopter. Control Eng Pract, 2014, 25: 1–15

    Article  Google Scholar 

  29. 29

    Cai G W, Chen B M, Lee T H, et al. Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, 2008. AIAA-2008-7414

    Google Scholar 

  30. 30

    Han J Q. Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties (in Chinese). Beijing: National Defense Industry Press, 2008

    Google Scholar 

  31. 31

    Chen Z Q, Sun M W, Yang R G. Research on the stability of linear active disturbance rejection control (in Chinese). Acta Automat Sin, 2013, 39: 574–580

    MathSciNet  Article  Google Scholar 

  32. 32

    Khalil H K. Nonlinear System. Englewood Cliffs: Prentice Hall Inc., 1996

    Google Scholar 

  33. 33

    Vitzilaios N I, Tsourveloudis N C. An experimental test bed for small unmanned helicopters. J Intell Robot Syst, 2009, 54: 769–794

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shuai Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Zhang, L., Qian, S. et al. Second-order sliding mode attitude controller design of a small-scale helicopter. Sci. China Inf. Sci. 59, 112209 (2016).

Download citation


  • small-scale helicopter
  • second-order slidingmode
  • extended state observer
  • disturbances
  • robustness


  • 小型直升机
  • 二阶滑模
  • 扩张状态观测器
  • 干扰
  • 鲁棒性