An overview on flight dynamics and control approaches for hypersonic vehicles

高超声速飞行器动力学与控制研究综述

Abstract

With the capability of high speed flying, a more reliable and cost efficient way to access space isprovided by hypersonic flight vehicles. Controller design, as key technology to make hypersonic flight feasibleand efficient, has numerous challenges stemming from large flight envelope with extreme range of operationconditions, strong interactions between elastic airframe, the propulsion system and the structural dynamics.This paper briefly presents several commonly studied hypersonic flight dynamics such as winged-cone model,truth model, curve-fitted model, control oriented model and re-entry motion. In view of different schemes such aslinearizing at the trim state, input-output linearization, characteristic modeling, and back-stepping, the recentresearch on hypersonic flight control is reviewed and the comparison is presented. To show the challenges forhypersonic flight control, some specific characteristics of hypersonic flight are discussed and the potential futureresearch is addressed with dealing with actuator dynamics, aerodynamic/reaction-jet control, flexible effects,non-minimum phase problem and dynamics interaction.

创新点

高超声速飞行器具有突出的飞行能力, 可为进入太空提供更加可靠和有效的途径; 作为高超声速技术重要方面之一的控制技术面临诸多挑战。本文首先给出锥体加速器模型、真实模型、曲线拟合模型、面向控制的模型以及再入运动等常用于研究的高超声速飞行器模型。其次, 分别根据小扰动线性化、输入输出线性化、特征建模、反步法等不同处理非线性动力学策略出发, 对高超声速飞行器相关控制研究进行总结和对比分析。最后, 结合高超声速飞行器的特殊飞行环境和动力学特点, 提供了未来可供研究的方向, 包括重点解决大包络快速自适应设计、气动力/直接力复合控制、气动弹性颤振控制、静不稳定控制等问题。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of air-breathing hypersonic vehicles: Review and newdirections. In: AIAA International Space Planes and Hypersonic Systems and Technologies, Virginia, 2003. 2003–7081

    Google Scholar 

  2. 2

    Wu H, Meng B. Review on the control of hypersonic flight vehicles. Adv Mech, 2009, 39: 756–765

    Google Scholar 

  3. 3

    Duan H, Li P. Progress in control approaches for hypersonic vehicle. Sci China Tech Sci, 2012, 55: 2965–2970

    Article  Google Scholar 

  4. 4

    Ataei A, Wang Q. Nonlinear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Contr Theor Appl, 2012, 6: 203–215

    MathSciNet  Article  Google Scholar 

  5. 5

    Xu H, Mirmirani M, Ioannou P. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid ContrDyn, 2004, 27: 829–838

    Article  Google Scholar 

  6. 6

    Gao D, Sun Z, Du T. Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: IEEE InternationalConference on Automation and Logistics, Jinan, 2007. 2314–2319

    Google Scholar 

  7. 7

    Sun Y, Hou M, Duan G, et al. On-line optimal autonomous reentry guidance based on improved gauss pseudospectralmethod. Sci China Inf Sci, 2014, 57: 052203

    Google Scholar 

  8. 8

    Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameterestimation and actuator compensation. Asian J Contr, 2014, 16: 162–174

    MATH  MathSciNet  Article  Google Scholar 

  9. 9

    Wilcox Z, MacKunis W, Bhat S, et al. Robust nonlinear control of a hypersonic aircraft in the presence of aerothermoelasticeffects. In: IEEE American Control Conference, St. Louis, 2009. 2533–2538

    Google Scholar 

  10. 10

    Jiang B, Gao Z, Shi P, et al. Adaptive fault-tolerant tracking control of near-space vehicle using takagi–sugeno fuzzymodels. IEEE Trans Fuzzy Syst, 2010, 18: 1000–1007

    Article  Google Scholar 

  11. 11

    Shaughnessy J, Pinckney S, Mcminn J, et al. Hypersonic vehicle simulation model: Winged-cone configuration. NASATM-102610, 1990

    Google Scholar 

  12. 12

    Bolender M, Doman D. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J SpacecraftRockets, 2007, 44: 374–387

    Article  Google Scholar 

  13. 13

    Parker J, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle. J GuidContr Dyn, 2007, 30: 856–869

    Google Scholar 

  14. 14

    Li H, Lin P, Xu D. Control-oriented modeling for air-breathing hypersonic vehicle using parameterized configuration approach. Chin J Aeronaut, 2011, 24: 81–89

    Article  Google Scholar 

  15. 15

    Buschek H, Calise A. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J GuidContr Dyn, 1997, 20: 42–48

    Google Scholar 

  16. 16

    Dydek Z, Annaswamy A, Lavretsky E. Adaptive control and the NASA x-15-3 flight revisited. IEEE Contr Syst Magaz, 2010, 30,: 32–48

    MathSciNet  Article  Google Scholar 

  17. 17

    Gibson T, Crespo L, Annaswamy A. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties.In: IEEE American Control Conference, St. Louis 2009. 3178–3183

    Google Scholar 

  18. 18

    Zerar M, Cazaurang F, Zolghadri A. Coupled linear parameter varying and flatness-based approach for space re-entryvehicles guidance. IET Contr Theor Appl, 2009, 3: 1081–1092

    MathSciNet  Article  Google Scholar 

  19. 19

    Hu X, Wu L, Hu C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. JFranklin Inst, 2012, 349: 559–577

    MATH  MathSciNet  Article  Google Scholar 

  20. 20

    Marrison C, Stengel F. Design of robust control systems for a hypersonic aircraft. J Guid Contr Dyn, 1998, 21: 58–63

    MATH  Article  Google Scholar 

  21. 21

    Wang Q, Stengel R. Robust nonlinear control of a hypersonic aircraft. J Guid Contr Dyn, 2000, 23: 577–585

    Article  Google Scholar 

  22. 22

    Kokotovic P. The joy of feedback: nonlinear and adaptive: 1991 Bode Prize Lecture. IEEE Contr Syst Magaz, 1991, 12: 7–17

    Article  Google Scholar 

  23. 23

    Xu B, Shi Z, Yang C, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systems instrict-feedback form. IEEE Trans Cybern, 2014, 14: 2626–2634

    Article  Google Scholar 

  24. 24

    Gong Y, Wu H. Characteristic model-based adaptive attitude control for hypersonic vehicle. J Astron, 2010, 31:2122–2128

    Google Scholar 

  25. 25

    Hu Y, Yuan Y, Min H, et al. Multi-objective robust control based on fuzzy singularly perturbed models for hypersonicvehicles. Sci China Inf Sci, 2011, 54: 563–576

    MATH  MathSciNet  Article  Google Scholar 

  26. 26

    Janardhanan S, Bandyopadhyay B. Multirate output feedback based robust quasi-sliding mode control of discrete-timesystems. IEEE Trans Autom Contr, 2007, 52: 499–503

    MathSciNet  Article  Google Scholar 

  27. 27

    Xu B, Sun F, Liu H, et al. Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IETContr Theor Appl, 2012, 6: 487–497

    MathSciNet  Article  Google Scholar 

  28. 28

    Xu B, Shi Z, Yang C, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttlesetting constraint. Nonlinear Dyn, 2013, 73: 1849–1861

    MATH  MathSciNet  Article  Google Scholar 

  29. 29

    Chavez R, Schmidt K. Analytical aeropropulsive-aeroelastic hypersonic-vehicle model with dynamic analysis. J GuidContr Dyn, 1994, 17: 1308–1319

    MATH  Google Scholar 

  30. 30

    Fiorentini L, Serrani A, Bolender M, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonicvehicles. J Guid Contr Dyn, 2009, 32: 401–416

    Article  Google Scholar 

  31. 31

    Bolender M, Doman D. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. In:AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco 2005. 6255

    Google Scholar 

  32. 32

    Groves P, Sigthorsson O, Serrani A, et al. Reference command tracking for a linearized model of an air-breathinghypersonic vechicle. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco 2005. AIAA2005a–6144

    Google Scholar 

  33. 33

    Sigthorsson O, Sarrani A. Development of linear parameter-varying models of hypersonic air-breathing vehicles. In:AIAA Guidance, Navigation, and Control Conference, Chicago, 2009. AIAA 2009-6282

    Google Scholar 

  34. 34

    Shtessel Y, McDuffie J, Jackson M. Sliding mode control of the X-33 vehicle in launch and re-entry modes. In: AIAAGuidance, Navigation and Control Conference, Boston, 1998. AIAA-98-4414

    Google Scholar 

  35. 35

    Schmidt K. Optimum mission performance and multivariable flight guidance for airbreathing launch vehicles. J GuidContr Dyn, 1997, 20: 1157–1164

    MATH  Google Scholar 

  36. 36

    Chavez R, Schmidt K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. J Guid Contr Dyn, 1999, 22: 87–95

    Article  Google Scholar 

  37. 37

    Sigthorsson D, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonicvehicle. J Guid Contr Dyn, 2008, 31: 1052–1066

    Article  Google Scholar 

  38. 38

    Hu Y, Sun F, Liu H. Neural network-based robust control for hypersonic flight vehicle with uncertainty modelling. Intern J Mod Identif Contr, 2010, 11: 87–98

    Article  Google Scholar 

  39. 39

    Chen M, Jiang C,Wu Q. Disturbance-observer-based robust flight control for hypersonic vehicles using neural networks. Adv Sci Lett, 2011, 4: 4–5

    Google Scholar 

  40. 40

    Li H, Wu L, Gao H, et al. Reference output tracking control for a flexible air-breathing hypersonic vehicle via outputfeedback. Opt Contr Appl Methods, 2012, 33: 461–487

    MATH  MathSciNet  Article  Google Scholar 

  41. 41

    Li H, Si Y, Wu L, et al. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Intern J Syst Sci, 2011, 42: 863–876

    MATH  MathSciNet  Article  Google Scholar 

  42. 42

    Mehta S, MacKunisW, Subramanian S, et al. Nonlinear control of hypersonic missiles for maximum target penetration.In: AIAA Guidance, Navigation, and Control Conference, Minneapolis, 2012. AIAA 2012-4886

    Google Scholar 

  43. 43

    Li X, Xian B, Diao C, et al. Output feedback control of hypersonic vehicles based on neural network and high gainobserver. Sci China Inf Sci, 2011, 54: 429–447

    MATH  MathSciNet  Article  Google Scholar 

  44. 44

    Yang J, Li S, Sun C, et al. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonicvehicles. IEEE Trans Aerospace Electr Syst, 2013, 49: 1263–1275

    Article  Google Scholar 

  45. 45

    Rehman O, Fidan B, Petersen R. Uncertainty modeling and robust minimax LQR control of multivariable nonlinearsystems with application to hypersonic flight. Asian J Contr, 2012, 14: 1180–1193

    MATH  MathSciNet  Article  Google Scholar 

  46. 46

    Sun H, Li S, Sun C. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn, 2013, 73: 229–244

    MATH  Article  Google Scholar 

  47. 47

    Gao D, Sun Z. Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci China Inf Sci, 2011, 54:521–528

    MATH  MathSciNet  Article  Google Scholar 

  48. 48

    Zhang Z, Hu J. Stability analysis of a hypersonic vehicle controlled by the characteristic model based adaptive controller. Sci China Inf Sci, 2012, 55: 2243–2256

    MATH  MathSciNet  Article  Google Scholar 

  49. 49

    Hu X, Gao H, Karimi H, et al. Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles. Intern JFuzzy Syst, 2011, 13: 323–333

    MathSciNet  Google Scholar 

  50. 50

    Luo X, Li J. Fuzzy dynamic characteristic model based attitude control of hypersonic vehicle in gliding phase. SciChina Inf Sci, 2011, 54: 448–459

    MATH  Article  Google Scholar 

  51. 51

    Li H, Sun Z, Min H, et al. Fuzzy dynamic characteristic modeling and adaptive control of nonlinear systems and itsapplication to hypersonic vehicles. Sci China Inf Sci, 2011, 54: 460–468

    MATH  MathSciNet  Article  Google Scholar 

  52. 52

    Xu B, Wang D, Sun F, et al. Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn, 2012, 70:269–278

    MATH  MathSciNet  Article  Google Scholar 

  53. 53

    Chen M, Ge S, Ren B. Robust attitude control of helicopters with actuator dynamics using neural networks. IETContr Theor Appl, 2010, 4: 2837–2854

    MathSciNet  Article  Google Scholar 

  54. 54

    Xu B, Gao D, Wang S. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci, 2011,54: 511–520

    MATH  MathSciNet  Article  Google Scholar 

  55. 55

    Yang C, Ge S, Xiang C, et al. Output feedback NN control for two classes of discrete-time systems with unknowncontrol directions in a unified approach. IEEE Trans Neural Networks, 2008, 19: 1873–1886

    Article  Google Scholar 

  56. 56

    Liu Y, Tong S, Chen P. Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeleddynamics. IEEE Trans Fuzzy Syst, 2013, 21: 275–288

    Article  Google Scholar 

  57. 57

    Chen W, Jiao L, Li J, et al. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedbacksystems with time-varying delays. IEEE Trans Syst Man Cybern-Part B: Cybernet, 2010, 40: 939-950

    Google Scholar 

  58. 58

    Gao D, Sun Z, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method. Contr TheorAppl, 2008, 25: 805–810

    Google Scholar 

  59. 59

    Xu B, Wang S, Gao D, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitudeconstraints on states and actuators. J Intell Robotic Syst, 2014, 73: 233–247

    Article  Google Scholar 

  60. 60

    Chen M, Jiang B. Robust attitude control of near space vehicles with time-varying disturbances. Intern J Contr AutomSyst, 2013, 11: 182–187

    MathSciNet  Article  Google Scholar 

  61. 61

    Chen M, Wu Q, Jiang C. Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn, 2012, 70: 2421–2432

    MathSciNet  Article  Google Scholar 

  62. 62

    Chen M, Wu Q, Jiang C, et al. Guaranteed transient performance based control with input saturation for near spacevehicles. Sci China Inf Sci, 2014, 57: 1–12

    MathSciNet  Google Scholar 

  63. 63

    Fiorentini L, Serrani A, Bolender M, et al. Robust nonlinear sequential loop closure control design for an air-breathinghypersonic vehicle model. In: IEEE American Control Conference, Seattle, 2008. 3458–3463

    Google Scholar 

  64. 64

    Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dynamics, doi: 10.1007/s11071-015-1958-8

  65. 65

    Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, 2012, 48: 1248–1261

    MATH  MathSciNet  Article  Google Scholar 

  66. 66

    Sun H, Yang Z, Zeng J. New tracking-control strategy for airbreathing hypersonic vehicles. J Guid Contr Dyn, 2013,36: 846–859

    MATH  Article  Google Scholar 

  67. 67

    Butt W, Yan L, Kendrick A. Adaptive dynamic surface control of a hypersonic flight vehicle with improved tracking. Asian J Contr, 2013, 15: 594–605

    MathSciNet  Article  Google Scholar 

  68. 68

    Zong Q, Ji Y, Zeng F, et al. Output feedback back-stepping control for a generic hypersonic vehicle via small-gaintheorem. Aerospace Sci Tech, 2012, 23: 409–417

    Article  Google Scholar 

  69. 69

    Wang Y, Jiang C,Wu Q. Attitude tracking control for variable structure near space vehicles based on switched nonlinearsystems. Chin J Aeronautics, 2013, 26: 186-193

    Google Scholar 

  70. 70

    Stengel R, Broussard J, Berry P. Digital controllers for vtol aircraft. IEEE Trans Aerospace Electr Syst, 1978, 1: 54–63

    Article  Google Scholar 

  71. 71

    Shin D, Kim Y. Nonlinear discrete-time reconfigurable flight control law using neural networks. IEEE Trans ContrSyst Tech, 2006, 14: 408–422

    Article  Google Scholar 

  72. 72

    Powly A, Bhat M. Missile autopilot design using discrete-time variable structure controller with sliding sector. J GuidContr Dyn, 2004, 27: 634–646

    Google Scholar 

  73. 73

    Chaudhuri A, Bhat S. Output feedback-based discrete-time sliding-mode controller design for model aircraft. J GuidContr Dyn, 2005, 28: 177–181

    Google Scholar 

  74. 74

    Xu B, Sun F, Yang C, et al. Adaptive discrete-time controller design with neural network for hypersonic flight vehiclevia back-stepping. Intern J Contr, 2011, 84: 1543–1552

    MATH  MathSciNet  Article  Google Scholar 

  75. 75

    Xu B, Wang D, Wang H, et al. Adaptive neural control of a hypersonic vehicle in discrete time. J Intell Robotic Syst,2014, 73: 219–231

    Article  Google Scholar 

  76. 76

    Xu B, Zhang Y. Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model. Neurocomputing, doi: 10.1016/j.neucom.2014.11.059

  77. 77

    Xu B, Pan Y, Wang D, et al. Discrete-time hypersonic flight control based on extreme learning machine. Neurocomputing,2014, 128: 232–241

    Article  Google Scholar 

  78. 78

    Xu B, Wang D, Sun F, et al. Direct neural control of hypersonic flight vehicles with prediction model in discrete time. Neurocomputing, 2013, 115: 39–48

    Article  Google Scholar 

  79. 79

    Xu B, Shi Z. Universal kriging control of hypersonic aircraft model using predictor model without back-stepping. IETContr Theor Appl, 2013, 7: 573–583

    MathSciNet  Article  Google Scholar 

  80. 80

    Wang N, Er M, Han M. Generalized single-hidden layer feedforward networks for regression problems. IEEE TransNeural Networks Learning Syst, doi: 10.1109/TNNLS.2014.2334366

  81. 81

    Wilcox Z, MacKunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft withaerothermoelastic effects. J Guid Contr Dyn, 2010, 33: 1213–1224

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Shi, Z. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci. 58, 1–19 (2015). https://doi.org/10.1007/s11432-014-5273-7

Download citation

Keywords

  • hypersonic flight vehicle
  • linearizing at the trim state
  • input-output linearization
  • back-stepping
  • non-minimum phase
  • 070201

关键词

  • 高超声速飞行器
  • 小扰动线性化
  • 输入输出线性化
  • 反步法
  • 非最小相位