Skip to main content
Log in

QSobel: A novel quantum image edge extraction algorithm

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Edge extraction is an indispensable task in digital image processing. With the sharp increase in the image data, real-time problem has become a limitation of the state of the art of edge extraction algorithms. In this paper, QSobel, a novel quantum image edge extraction algorithm is designed based on the flexible representation of quantum image (FRQI) and the famous edge extraction algorithm Sobel. Because FRQI utilizes the superposition state of qubit sequence to store all the pixels of an image, QSobel can calculate the Sobel gradients of the image intensity of all the pixels simultaneously. It is the main reason that QSobel can extract edges quite fast. Through designing and analyzing the quantum circuit of QSobel, we demonstrate that QSobel can extract edges in the computational complexity of O(n 2) for a FRQI quantum image with a size of 2n × 2n. Compared with all the classical edge extraction algorithms and the existing quantum edge extraction algorithms, QSobel can utilize quantum parallel computation to reach a significant and exponential speedup. Hence, QSobel would resolve the real-time problem of image edge extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge Univ Press, 2000

    MATH  Google Scholar 

  2. Feynman R. Simulating physics with computers. Int J Theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  3. Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Los Almitos, USA, 1994. 124–134

    Chapter  Google Scholar 

  4. Grover L. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual Symposium on the Theory of Computing, Philadelphia, USA, 1996. 212–219

    Google Scholar 

  5. Rafael C G, Richard E W, Steven L E. Digital Image Processing, 4th ed. Beijing: House of Electronics Industry Press, 2002

    Google Scholar 

  6. Venegas-Andraca S E, Ball J L. Storing images in engtangled quantum systems. arXiv:quant-ph/0402085, 2003

    Google Scholar 

  7. Venegas-Andraca S E, Bose S. Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, 2003. 137–147

    Chapter  Google Scholar 

  8. Venegas-Andraca S E, Ball J L, Burnett K, et al. Processing images in entangled quantum systems. Quantum Inf Process, 2010, 9: 1–11

    Article  MathSciNet  Google Scholar 

  9. Venegas-Andraca S E, Bose S. Quantum computation and image processing: New trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence, 2003. 1563–1564

    Google Scholar 

  10. Latorre J I. Image compression and entanglement. arXiv:quant-ph/0510031, 2005

    Google Scholar 

  11. Le P Q, Dong F, Hirota K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf Process, 2011, 10: 63–84

    Article  MATH  MathSciNet  Google Scholar 

  12. Tseng C, Hwang T. Quantum digital image processing algorithms. In: Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and Image Processing, 2003. 827–834

    Google Scholar 

  13. Fu X, Ding M, Sun Y, et al. A new quantum edge detection algorithm for medical images. In: Proceedings of Medical Imaging, Parallel Processing of Images and Optimization Techniques. SPIE Vol. 7497, 2009

    Google Scholar 

  14. Sobel L. Camera Models and Machine Perception. Stanford: Stanford Univ Press, 1970

    Google Scholar 

  15. Prewitt J. Object Enhancement and Extraction. New York: Picture Process and Psychopictoric Press, 1970. 75–149

    Google Scholar 

  16. Kirsch R A. Computer determination of the constituent structure of biological images. Comput Biol Med, 1971, 18: 113–125

    Google Scholar 

  17. Canny J. A computational approach to edge detection. IEEE TPAMI, 1986, 8: 679–697

    Article  Google Scholar 

  18. Niya J M, Aghagolzadeh A. Edge detection using directional wavelet transforms. In: Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, Ajaccio, 2004. 1: 281–284

    Article  Google Scholar 

  19. Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge Univ Press, 1985

    Book  MATH  Google Scholar 

  20. Lloyd S. Almost any quantum logic gate is universal. Phys Rev Lett, 1995, 75: 346–349

    Article  Google Scholar 

  21. Xu X, Xiao F. Application of dichotomy in decomposition of multi-line quantum logic gate (in Chinese). J Southeast Univ, 2010, 40: 928–931

    MATH  MathSciNet  Google Scholar 

  22. Qu Z, Wang P, Gao Y. Randomized SUSAN edge detector. Opt Eng Lett, 2011, 11: 1–4

    Google Scholar 

  23. Zhang Y, Lu K, Gao Y, et al. NEQR: A novel enhanced quantum representation of digital images. Quantum Inf Process, 2013, 12: 2833–2860

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang Y, Lu K, Gao Y, et al. A novel quantum representation for log-polar images. Quantum Inf Process, 2013, 12: 3103–3126

    Article  MATH  MathSciNet  Google Scholar 

  25. Lomont C. Quantum convolution and quantum correlation algorithms are physically impossible. arXiv:quantph/0309070, 2003

    Google Scholar 

  26. Le P Q, Iliyasu A M, Dong F, et al. Strategies for designing geometric transformations on quantum images. Theor Comput Sci, 2011, 412: 1406–1418

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, K. & Gao, Y. QSobel: A novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2015). https://doi.org/10.1007/s11432-014-5158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5158-9

Keywords

Navigation