Skip to main content
Log in

Trace representation and linear complexity of binary sequences derived from Fermat quotients

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We describe the trace representations of two families of binary sequences derived from the Fermat quotients modulo an odd prime p (one is the binary threshold sequences and the other is the Legendre Fermat quotient sequences) by determining the defining pairs of all binary characteristic sequences of cosets, which coincide with the sets of pre-images modulo p 2 of each fixed value of Fermat quotients. From the defining pairs, we can obtain an earlier result of linear complexity for the binary threshold sequences and a new result of linear complexity for the Legendre Fermat quotient sequences under the assumption of 2p−1 ≢ 1 mod p 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agoh T, Dilcher K, Skula L. Fermat quotients for composite moduli. J Number Theory, 1997, 66: 29–50

    Article  MathSciNet  MATH  Google Scholar 

  2. Aly H, Winterhof A. Boolean functions derived from Fermat quotients. Cryptogr Commun, 2011, 3: 165–174

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J, Ford K, Konyagin S, et al. On the divisibility of Fermat quotients. Michigan Math J, 2010, 59: 313–328

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang M C. Short character sums with Fermat quotients. Acta Arith, 2012, 152: 23–38

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Z X, Du X N. On the linear complexity of binary threshold sequences derived from Fermat quotients. Des Codes Cryptogr, 2013, 67: 317–323

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen ZX, Gómez-Pérez D. Linear complexity of binary sequences derived from polynomial quotients. In: Proceedings of Sequences and Their Applications-SETA 2012, Lecture Notes in Computer Science 7280. Berlin: Springer, 2012. 181–189

    Chapter  Google Scholar 

  7. Chen Z X, Ostafe A, Winterhof A. Structure of pseudorandom numbers derived from Fermat quotients. In: Proceedings of Arithmetic of Finite Fields-WAIFI 2010, Lecture Notes in Computer Science 6087. Berlin: Springer, 2010. 73–85

    Google Scholar 

  8. Chen Z X, Winterhof A. Additive character sums of polynomial quotients. Contemp Math, 2012, 579: 67–73

    Article  MathSciNet  Google Scholar 

  9. Chen Z X, Winterhof A. On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients. Int J Number Theory, 2012, 8: 631–641

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Z X, Winterhof A. Interpolation of Fermat quotients. SIAM J Discr Math, 2014, 28: 1–7

    Article  MathSciNet  MATH  Google Scholar 

  11. Du X N, Chen Z X, Hu L. Linear complexity of binary sequences derived from Euler quotients with prime-power modulus. Inform Process Lett, 2012, 112: 604–609

    Article  MathSciNet  MATH  Google Scholar 

  12. Du X N, Klapper A, Chen Z X. Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations. Inform Process Lett, 2012, 112: 233–237

    Article  MathSciNet  MATH  Google Scholar 

  13. Ernvall R, Metsänkylä T. On the p-divisibility of Fermat quotients. Math Comp, 1997, 66: 1353–1365

    Article  MathSciNet  MATH  Google Scholar 

  14. Gómez-Pérez D, Winterhof A. Multiplicative character sums of Fermat quotients and pseudorandom sequences. Period Math Hungar, 2012, 64: 161–168

    Article  MathSciNet  Google Scholar 

  15. Ostafe A, Shparlinski I E. Pseudorandomness and dynamics of Fermat quotients. SIAM J Discr Math, 2011, 25: 50–71

    Article  MathSciNet  MATH  Google Scholar 

  16. Sha M. The arithmetic of Carmichael quotients. arXiv:1108.2579, 2011

    Google Scholar 

  17. Shkredov I D. On Heilbronn’s exponential sum. Quart J Math, 2013, 64: 1221–1230

    Article  MathSciNet  MATH  Google Scholar 

  18. Shparlinski I E. Character sums with Fermat quotients. Quart J Math, 2011, 62: 1031–1043

    Article  MATH  Google Scholar 

  19. Shparlinski I E. Bounds of multiplicative character sums with Fermat quotients of primes. Bull Aust Math Soc, 2011, 83: 456–462

    Article  MathSciNet  MATH  Google Scholar 

  20. Shparlinski I E. On the value set of Fermat quotients. Proc Amer Math Soc, 2012, 140: 1199–1206

    Article  MathSciNet  MATH  Google Scholar 

  21. Shparlinski I E. Fermat quotients: Exponential sums, value set and primitive roots. Bull Lond Math Soc, 2011, 43: 1228–1238

    Article  MathSciNet  MATH  Google Scholar 

  22. Shparlinski I E, Winterhof A. Distribution of values of polynomial Fermat quotients. Finite Fields Appl, 2013, 19: 93–104

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen Z X, Hu L, Du X N. Linear complexity of some binary sequences derived from Fermat quotients. China Commun, 2012, 9: 105–108

    Google Scholar 

  24. Golomb S W, Gong G. Signal Design for Good Correlation. Cambridge: Cambridge University Press, 2005

    Book  MATH  Google Scholar 

  25. Lidl R, Niederreiter H. Finite Fields. 2nd ed. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  26. Dai Z D, Gong G, Song H Y. Trace representation and linear complexity of binary e-th residue sequences. In: Proceedings of International Workshop on Coding and Cryptography, Versailles, 2003. 121–133

    Google Scholar 

  27. Dai Z D, Gong G, Song H Y. A trace representation of binary Jacobi sequences. Discrete Math, 2009, 309: 1517–1527

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai Z D, Gong G, Song H Y, et al. Trace representation and linear complexity of binary e-th power residue sequences of period p. IEEE Trans Inform Theory, 2011, 57: 1530–1547

    Article  MathSciNet  Google Scholar 

  29. Du X N, Yan T J, Xiao G Z. Trace representation of some generalized cyclotomic sequences of length pq. Inform Sci, 2008, 178: 3307–3316

    Article  MathSciNet  MATH  Google Scholar 

  30. Helleseth T, Kim S H, No J S. Linear complexity over \(\mathbb{F}_p \) and trace representation of Lempel-Cohn-Eastman sequences. IEEE Trans Inform Theory, 2003, 49: 1548–1552

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim J H, Song H Y. Trace representation of Legendre sequences. Des Codes Cryptogr, 2001, 24: 343–348

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim J H, Song H Y, Gong G. Trace representation of Hall’s sextic residue sequences of period p ≡ 7 (mod 8). In: No J S, Song H Y, Helleseth T, et al, eds. Mathematical Properties of Sequences and Other Combinatorial Structures. Berlin: Springer, 2003. 23–32

    Chapter  Google Scholar 

  33. No J S, Lee H K, Chung H, et al. Trace representation of Legendre sequences of Mersenne prime period. IEEE Trans Inform Theory, 1996, 42: 2254–2255

    Article  MathSciNet  MATH  Google Scholar 

  34. Jungnickel D. Finite Fields: Structure and Arithmetics. Mannheim: Bibliographisches Institute, 1993

    MATH  Google Scholar 

  35. Massey J L. Shift register synthesis and BCH decoding. IEEE Trans Inform Theory, 1969, 15: 122–127

    Article  MathSciNet  MATH  Google Scholar 

  36. Blahut R E. Transform techniques for error control codes. IBM J Res Develop, 1979, 23: 299–315

    Article  MathSciNet  MATH  Google Scholar 

  37. Crandall R, Dilcher K, Pomerance C. A search for Wieferich and Wilson primes. Math Comp, 1997, 66: 433–449

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiXiong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z. Trace representation and linear complexity of binary sequences derived from Fermat quotients. Sci. China Inf. Sci. 57, 1–10 (2014). https://doi.org/10.1007/s11432-014-5092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5092-x

Keywords

Navigation