Skip to main content
Log in

An upper (lower) bound for Max (Min) CSP

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The random constraint satisfaction problem (CSP) instances generated by Model RB have been widely used in the field of CSP and have some nice features. In this paper, we consider two optimization versions of CSP, i.e., the maximum constraint satisfaction problem (Max-CSP) and the minimum satisfaction problem (Min-CSP) of Model RB. The problem of the Max-CSP is how to find an assignment to all the variables such that the maximum number of constraints are satisfied and the problem of Min-CSP is how to find an assignment to all the variables such that the minimum number of constraints are satisfied. We use the first moment method to prove that when r > 2α(1/p−1) (or p > 2α/(2α+r)), an upper bound of Max-CSP can be derived. Similarly, we can prove that when r > 2α(1/p−1) (or p > 2α/(2α + r)), a lower bound of Min-CSP can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon C E. A mathematical theory of communication. Bell Syst Tech J, 1948, 27:379–423

    Article  MATH  MathSciNet  Google Scholar 

  2. Creignou N, Khanna S, Sudan M. Complexity Classifications of Boolean Constraint Satisfaction Problems. In: Monographs on Discrete Mathematics and Applications, Vol. 7. SIAM, 2001

  3. Hell P, Nesetril J. Graphs and Homomorphisms. Oxford University Press, 2004

    Google Scholar 

  4. Cheeseman P, Kanefsky B, Taylor W M. Where the really hard problems are. In: Proceedings of IJCAI-91, Sydney, 1991. 331–337

  5. Kaporis A C, Kirousis L M, Lalas E G. The probabilistic analysis of a greedy satisfiability algorithm. Random Struct Algor, 2006, 28:444–480

    Article  MATH  MathSciNet  Google Scholar 

  6. Díaz Cort J, Lefteris K, Mitsche D, et al. A new upper bound for 3-SAT. In: Proceedings of FSTTCS’ 08, Bangalore, 2008. 163–174

  7. Smith B M, Dyer M E. Locating the phase transition in binary constraint satisfaction problems. Artif Intell, 1996, 81:155–181

    Article  MathSciNet  Google Scholar 

  8. Achlioptas D, Kirousis L M, Kranakis E, et al. Stamatiou: Random Constraint Satisfaction: A More Accurate Picture. Berlin/Heidelberg: Springer, 1997. 107–120

    Google Scholar 

  9. Xu K, Boussemart F, Hemery F, et al. Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif Intell, 2007, 171:514–534

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu K, Li W. Exact phase transitions in random constraint satisfaction problems. J Artif Intell Res, 2000, 12:93–103

    MATH  Google Scholar 

  11. Huang P, Yin M H, Xu K. Exact phase transitions and approximate algorithm of #CSP. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, 2011. 1790–1791

    Google Scholar 

  12. Bollobás B, Borgs C, Chayes J T, et al. The scaling window of the 2-SAT transition. Random Struct Algor, 2001, 18:201–256

    Article  MATH  Google Scholar 

  13. Gramm J, Hirsch E A, Niedermeier R, et al. Worst-case upper bounds for MAX-2-SAT with an application to MAXCUT. Discrete Appl Math, 2003, 130:139–155

    Article  MATH  MathSciNet  Google Scholar 

  14. Hirsch E A. A new algorithm for MAX-2-SAT. In: Proceedings of 17th International Symposium on Theoretical Aspects of Computer Science. Lect Notes in Comput Sci, vol. 1770. Springer-Verlag, 2000. 65–73

    Google Scholar 

  15. Coppersmith D, Gamarnik D, Hajiaghayi M T, et al. Random MAX SAT, random MAX CUT, and their phase transitions. Random Struct Algor, 2004, 24:502–545

    Article  MATH  MathSciNet  Google Scholar 

  16. Xu X L, Gao Z S, Xu K. A tighter upper bound for random MAX 2-SAT. Inf Process Lett, 2011, 111:115–119

    Article  MATH  MathSciNet  Google Scholar 

  17. Li C M, Zhu Z, Manyà F, et al. Minimum satisfiability and its applications. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Bellaterra, 2011. 605–610

    Google Scholar 

  18. Achlioptas D, Gomes C, Kautz H, et al. Generating satisfiable problem instances. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence, 2000. 256–261

    Google Scholar 

  19. Liu T, Lin X, Wang C, et al. Large hinge width on sparse random hypergraphs. In: Proceedings of the 22th International Joint Conference on Artificial Intelligence, vol. 1, 2011. 611–616

    Google Scholar 

  20. Xu K, Li W. Many hard examples in exact phase transitions. Theor Comput Sci, 2006, 355:291–302

    Article  MATH  Google Scholar 

  21. Zhou J, Huang P, Yin M, et al. Phase transitions of EXPSPACE-complete problems. Int J Found Comput Sci, 2010, 21:1073–1088

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhou J, Yin M, Li X, et al. Phase transitions of EXPSPACE-complete problems: a further step. Int J Found Comput Sci, 2012, 23:173–184

    Article  MATH  MathSciNet  Google Scholar 

  23. Gao J, Yin M, Xu K. Phase Transitions in Knowledge Compilation: An Experimental Study. Berlin/Heidelberg: Springer, 2011. 364–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHao Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Yin, M. An upper (lower) bound for Max (Min) CSP. Sci. China Inf. Sci. 57, 1–9 (2014). https://doi.org/10.1007/s11432-013-5052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5052-x

Keywords

Navigation