Science China Information Sciences

, Volume 56, Issue 12, pp 1–21 | Cite as

Anomalous transport of light in photonic crystal

  • ZhiYuan LiEmail author
Special Focus Progress of Projects Supported by NSFC


Photonic crystal (PC) offers a powerful means to mold the flow of light and manipulate lightmatter interaction at subwavelength scale. In this paper, we review some recent theoretical and experimental work in our group on design and fabrication of microwave and infrared PC structures with the capability to achieve various anomalous transport behaviors of light. We discuss several microwave 2D PC and quasi-crystal structures that exhibit nearly isotropic equi-frequency surface (EFS) contours with effective refractive index equal to −1. In these structures, we can observe negative refraction induced focusing of microwave against a flat slab lens in non-near field regions. In comparison, if PC structures have anisotropic EFS contours in the lowest photonic band, only near-field focusing is expected. We move forward to high frequency infrared band and exploreremarkable dispersion properties of silicon 2D PC slab to achieve broad-band negative refraction and self-collimation transport of infrared light beam. We also explore the possibility to realize negative refraction and flat-lens focusing of light in 3D PC made from inverse opal. These studies show that PCs can offer a powerful route to manipulate various anomalous transport of light via photonic band gap and band structure engineering, which can be harnessed to build a wide variety of integrated optical devices for large-scale optical integration.


photonic crystal photonic quasicrystal photonic band structure equifrequency surface contour negative refraction superlens self-collimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li Z Y. Nanophotonics in China: overviews and highlights. Front Phys, 2012, 7: 601–631CrossRefGoogle Scholar
  2. 2.
    Veselago V G. Electrodynamics of substances with simultaneously negative values of ∈ and µ. Sov Phys Uspekhi, 1968, 10: 509–514CrossRefGoogle Scholar
  3. 3.
    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773–4776CrossRefGoogle Scholar
  4. 4.
    Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures. J Phys-Condens Mat, 1998, 10: 4785–4809CrossRefGoogle Scholar
  5. 5.
    Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969CrossRefGoogle Scholar
  6. 6.
    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79CrossRefGoogle Scholar
  7. 7.
    Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777–1780MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21Google Scholar
  10. 10.
    Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124CrossRefGoogle Scholar
  11. 11.
    Yang F, Mei Z L, Jin T Y, et al. dc electric invisibility cloak. Phys Rev Lett, 2012, 109: 053902CrossRefGoogle Scholar
  12. 12.
    Cheng Q, Jiang W X, Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys Rev Lett, 2012, 108: 213903CrossRefGoogle Scholar
  13. 13.
    Lai Y, Ng J, Chen H, et al. Illusion optics: The optical transformation of an object into another object. Phys Rev Lett, 2009, 102: 253902CrossRefGoogle Scholar
  14. 14.
    Lai Y, Chen H, Zhang Z Q, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett, 2009, 102: 093901CrossRefGoogle Scholar
  15. 15.
    Huang X Q, Lai Y, Hang Z H, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zerorefractive-index materials. Nat Mat, 2011, 10: 582–586CrossRefGoogle Scholar
  16. 16.
    Li J, Zhou L, Chan C T, et al. Photonic band gap from a stack of positive and negative index materials. Phys Rev Lett, 2003, 90: 083901CrossRefGoogle Scholar
  17. 17.
    Jiang H T, Chen H, Li H Q, et al. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl Phys Lett, 2003, 83: 5386–5388CrossRefGoogle Scholar
  18. 18.
    Jiang H T, Chen H, Li H Q, et al. Properties of one-dimensional photonic crystals containing single-negative materials. Phys Rev E, 2004, 69: 066607CrossRefGoogle Scholar
  19. 19.
    Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908CrossRefGoogle Scholar
  20. 20.
    Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mat, 2012, 11: 426–431CrossRefGoogle Scholar
  21. 21.
    Li X, Liang Z X, Liu X H, et al. All-angle zero reflection at metamaterial surfaces. Appl Phys Lett, 2008, 93: 171111CrossRefGoogle Scholar
  22. 22.
    Wu C, Li H Q, Wei Z Y, et al. Theory and experimental realization of negative refraction in a metallic helix array. Phys Rev Lett, 2010, 105: 247401CrossRefGoogle Scholar
  23. 23.
    Wu C, Li H Q, Yu X, et al. Metallic helix array as a broadband wave plate. Phys Rev Lett, 2011, 107: 177401CrossRefGoogle Scholar
  24. 24.
    Li T, Wang S M, Cao J X, et al. Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl Phys Lett, 2010, 97: 261113CrossRefGoogle Scholar
  25. 25.
    Liu N, Liu H, Zhu S N, et al. Stereometamaterials. Nat Photonics, 2009, 3: 157–162CrossRefGoogle Scholar
  26. 26.
    Fan R H, Peng R W, Huang X R, et al. Transparent metals for ultrabroadband electromagnetic waves. Adv Mater, 2012, 24: 1980–1986CrossRefGoogle Scholar
  27. 27.
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 58: 2059–2062CrossRefGoogle Scholar
  28. 28.
    John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987, 58: 2486–2489CrossRefGoogle Scholar
  29. 29.
    Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: Putting a new twist on light. Nature, 1997, 386: 143–149CrossRefGoogle Scholar
  30. 30.
    Notomi M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys Rev B, 2000, 62: 10696–10705CrossRefGoogle Scholar
  31. 31.
    Luo C, Johnson S G, Joannopoulos J D, et al. All-angle negative refraction without negative effective index. Phys Rev B, 2002, 65: 201104(R)CrossRefGoogle Scholar
  32. 32.
    Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys Rev B, 2003, 68: 245110CrossRefGoogle Scholar
  33. 33.
    Luo C Y, Johnson S G, Joannopoulos J D, et al. Subwavelength imaging in photonic crystals. Phys Rev B, 2003, 68: 045115CrossRefGoogle Scholar
  34. 34.
    Foteinopoulou S, Soukoulis C M. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys Rev B, 2003, 67: 235107CrossRefGoogle Scholar
  35. 35.
    Wang X, Ren Z F, Kempa K. Unrestricted superlensing in a triangular two-diemnsional photonic crystal. Opt Express, 2004, 12: 2919–2924CrossRefGoogle Scholar
  36. 36.
    Ao X Y, He S L.Three-dimensional photonic crystal of negative refraction achieved by interference lithography. Opt Lett, 2004, 29: 2542–2544CrossRefGoogle Scholar
  37. 37.
    Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals. Nature, 2003, 423: 604–605CrossRefGoogle Scholar
  38. 38.
    Cubukcu E, Aydin K, Ozbay E, et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys Rev Lett, 2003, 91: 207401CrossRefGoogle Scholar
  39. 39.
    Parimi P V, Lu W T, Vodo P, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys Rev Lett, 2004, 92: 127401CrossRefGoogle Scholar
  40. 40.
    Parimi P V, Lu W T T, Vodo P, et al. Photonic crystals -imaging by flat lens using negative refraction. Nature, 2003, 426: 404–404CrossRefGoogle Scholar
  41. 41.
    Berrier A, Mulot M, Swillo M, et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys Rev Lett, 2004, 93: 073902CrossRefGoogle Scholar
  42. 42.
    Schonbrun E, Tinker M, Park W, et al. Negative refraction in a Si-polymer photonic crystal membrane. IEEE Photon Technol Lett, 2005, 17: 1196–1198CrossRefGoogle Scholar
  43. 43.
    Li L M, Zhang Z Q. Muitiple-scattering approach to finite-sized photonic band-gap materials. Phys Rev B, 1998, 58: 9587–9590CrossRefGoogle Scholar
  44. 44.
    Li Z Y, Ho K M. Light propagation through photonic crystal waveguide bends by eigenmode examinations. Phys Rev B, 2003, 68: 045201CrossRefGoogle Scholar
  45. 45.
    Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett, 1990, 65: 3152–3155CrossRefGoogle Scholar
  46. 46.
    Li Z Y, Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Phys Rev B, 1998, 58: 3721–3729CrossRefGoogle Scholar
  47. 47.
    Li Z Y, Gu B Y, Yang G Z. Large absolute band gap in 2d anisotropic photonic crystals. Phys Rev Lett, 1998, 81: 2574–2577CrossRefGoogle Scholar
  48. 48.
    Feng S, Li Z Y, Feng Z F, et al. Imaging properties of an elliptical-rod photonic-crystal slab lens. Phys Rev B, 2005, 72: 075101CrossRefGoogle Scholar
  49. 49.
    Feng S A, Li Z Y, Feng Z F, et al. Focusing properties of a rectangular-rod photonic-crystal slab. J Appl Phys, 2005, 98: 063102CrossRefGoogle Scholar
  50. 50.
    Ren K, Feng S, Feng Z F, et al. Imaging properties of triangular lattice photonic crystal at the lowest band. Phys Lett A, 2006, 348: 405–409CrossRefGoogle Scholar
  51. 51.
    Hu X H, Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens. Appl Phys Lett, 2004, 85: 1520–1522CrossRefGoogle Scholar
  52. 52.
    Zhang X. Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals. Phys Rev B, 2004, 70: 195110CrossRefGoogle Scholar
  53. 53.
    Feng Z F, Zhang X D, Ren K, et al. Experimental demonstration of non-near-field image formed by negative refraction. Phys Rev B, 2006, 73: 075118CrossRefGoogle Scholar
  54. 54.
    Feng S A, Li Z Y, Feng Z F, et al. Engineering the imaging properties of a metallic photonic-crystal slab lens. Appl Phys Lett, 2006, 88: 031104CrossRefGoogle Scholar
  55. 55.
    Feng Z F, Zhang X D, Wang Y Q, et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Phys Rev Lett, 2005, 94: 247402CrossRefGoogle Scholar
  56. 56.
    Rotenberg E, Theis W, Horn K, et al. Quasicrystalline valence bands in decagonal alnico. Nature, 2000, 406: 602–605CrossRefGoogle Scholar
  57. 57.
    Ren C, Tian J, Feng S, et al. High resolution three-port filter in two dimensional photonic crystal slabs. Opt Express, 2006, 14: 10014–10020CrossRefGoogle Scholar
  58. 58.
    Tao H H, Liu R J, Li Z Y, et al. Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy. Phys Rev B, 2006, 74: 205111CrossRefGoogle Scholar
  59. 59.
    Liu Y Z, Liu R J, Zhou C Z, et al. Gamma-Mu waveguides in two-dimensionaltriangular-lattice photonic crystal slabs. Opt Express, 2008, 16: 21483–21491CrossRefGoogle Scholar
  60. 60.
    Liu Y Z, Liu R J, Feng S A, et al. Multichannel filters via Gamma-M and Gamma-K waveguide coupling in twodimensional triangular-lattice photonic crystal slabs. Appl Phys Lett, 2008, 93: 241107CrossRefGoogle Scholar
  61. 61.
    Gan L, Zhou C Z, Wang C, et al. Two-dimensional air-bridged silicon photonic crystal slab devices. Phys Status Solid A-Appl Mat Sci, 2010, 207: 2715–2725CrossRefGoogle Scholar
  62. 62.
    Li Z Y, Wang C, Gan L, Silicon photonic crystals toward optical integration. In: Passaro V M N, ed. Advances in photonic crystals. InTech, 2013. 297–340Google Scholar
  63. 63.
    Gan L, Liu Y Z, Li J Y, et al. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm. Opt Express, 2009, 17: 9962–9970CrossRefGoogle Scholar
  64. 64.
    Kosaka H, Kawashima T, Tomita A, et al. Self-collimating phenomena in photonic crystals. Appl Phys Lett, 1999, 74: 1212–1214CrossRefGoogle Scholar
  65. 65.
    Yu X F, Fan S H. Bends and splitters for self-collimated beams in photonic crystals. Appl Phys Lett, 2003, 83: 3251–3253CrossRefGoogle Scholar
  66. 66.
    Rakich P T, Dahlem M S, Tandon S, et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat Mat, 2006, 5: 93–96CrossRefGoogle Scholar
  67. 67.
    Gan L, Qin F, Li Z Y. Broadband large-angle self-collimation in two-dimensional silicon photonic crystal. Opt Lett, 2012, 37: 2412–2414CrossRefGoogle Scholar
  68. 68.
    Ren K, Li Z Y, Ren X B, et al. Three-dimensional light focusing in inverse opal photonic crystals. Phys Rev B, 2007, 75: 115108CrossRefGoogle Scholar
  69. 69.
    Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281: 802–804CrossRefGoogle Scholar
  70. 70.
    Subramania G, Constant K, Biswas R, et al. Optical photonic crystals fabricated from colloidal systems. Appl Phys Lett, 1999, 74: 3933–3935CrossRefGoogle Scholar
  71. 71.
    Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414: 289–293CrossRefGoogle Scholar
  72. 72.
    Ni P G, Dong P, Cheng B Y, et al. Synthetic SiO2 opals. Adv Mater, 2001, 13: 437–441CrossRefGoogle Scholar
  73. 73.
    Ni P G, Cheng B Y, Zhang D Z. Inverse opal with an ultraviolet photonic gap. Appl Phys Lett, 2002, 80: 1879–1881CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Optical Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations