Science China Information Sciences

, Volume 56, Issue 12, pp 1–14 | Cite as

Metamaterial band theory: fundamentals & applications

  • Aaswath Pattabhi Raman
  • Wonseok Shin
  • ShanHui Fan
Special Focus Progress of Projects Supported by NSFC


Remarkable progress has been made over the past decade in controlling light propagation and absorption in compact devices using nanophotonic structures and metamaterials. From sensing and modulation, to on-chip communication and light trapping for solar cells, new device applications and opportunities motivate the need for a rigorous understanding of the modal properties of metamaterials over a broad range of frequencies. In this review, we provide an overview of a metamaterial band theory we have developed that rigorously models the behavior of metamaterials made of dispersive materials such as metals. The theory extends traditional photonic band theory for periodic dielectric structures by coupling the mechanical motion of electrons in the metal directly to Maxwell’s equations. The solution for the band structures of metamaterials is then reduced to a standard matrix eigenvalue problem that nevertheless fully takes into account the dispersive properties of the constituent materials. As an application of the metamaterial band theory, we show that one can develop a perturbation formalism based on this theory to physically explain and predict the effect of dielectric refractive index modulation or metallic plasma frequency variation in metamaterials. Furthermore, the metamaterial band theory also provides an intuitive physical picture of the source of modal material loss, as well as a rigorous upper bound on the modal material loss rate of any plasmonic, metamaterial structure. This in turn places fundamental limits on the broadband operation of such devices for applications such as photodetection and absorption.


metamaterials photonic band theory plasmonics sensing active metamaterials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen X D, Grzegorczyk T M, Wu B I, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70: 016608CrossRefGoogle Scholar
  2. 2.
    Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376–379CrossRefGoogle Scholar
  3. 3.
    Hur K, Francescato Y, Giannini V, et al. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew Chem Int Ed, 2011, 50: 11985–11989CrossRefGoogle Scholar
  4. 4.
    Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008Google Scholar
  5. 5.
    Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express, 2001, 8: 173–190CrossRefGoogle Scholar
  6. 6.
    Busch K, Mingaleev S F, Garcia-Martin A, et al. The wannier function approach to photonic crystal circuits. J Phys-Condens Matter, 2003, 15: R1233–R1256CrossRefGoogle Scholar
  7. 7.
    Jiao Y, Fan S H, Miller D A B. Systematic photonic crystal device design: global and local optimization and sensitivity analysis. IEEE J Quantum Electron, 2006, 42: 266–279CrossRefGoogle Scholar
  8. 8.
    Kuzmiak V, Maradudin A A, McGurn A R. Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal. Phys Rev B, 1997, 55: 4298–4311CrossRefGoogle Scholar
  9. 9.
    Kuzmiak V, Maradudin A A. Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation. Phys Rev B, 1997, 55: 7427–7444CrossRefGoogle Scholar
  10. 10.
    Kuzmiak V, Maradudin A A. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components. Phys Rev B, 1998, 58: 7230–7251CrossRefGoogle Scholar
  11. 11.
    Pendry J B. Calculating photonic band structure. J Phys-Condens Matter, 1996, 8: 1085–1108CrossRefGoogle Scholar
  12. 12.
    Sakoda K, Kawai N, Ito T, et al. Photonic bands of metallic systems. i. principle of calculation and accuracy. Phys Rev B, 2001, 64: 045116Google Scholar
  13. 13.
    Huang K C, Bienstman P, Joannopoulos J D, et al. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys Rev Lett, 2003, 90: 196402CrossRefGoogle Scholar
  14. 14.
    Ito T, Sakoda K. Photonic bands of metallic systems. 5. features of surface plasmon polaritons. Phys Rev B, 2001, 64: 045117CrossRefGoogle Scholar
  15. 15.
    Toader O, John S. Photonic band gap enhancement in frequency-dependent dielectrics. Phys Rev E, 2004, 70: 046605CrossRefGoogle Scholar
  16. 16.
    Moreno E, Erni D, Hafner C. Band structure computations of metallic photonic crystals with the multiple multipole method. Phys Rev B, 2002, 65: 155120CrossRefGoogle Scholar
  17. 17.
    McPhedran R C, Botten L C, McOrist J, et al. Density of states functions for photonic crystals. Phys Rev E, 2004, 69: 016609CrossRefGoogle Scholar
  18. 18.
    Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003, 377: 528–539CrossRefGoogle Scholar
  19. 19.
    Homola J, ed. Surface Plasmon Resonance Based Sensors. Berlin: Springer, 2006Google Scholar
  20. 20.
    Kabashin A, Evans P, Pastkovsky S. Plasmonic nanorod metamaterials for biosensing. Nat Mat, 2009, 8: 867–871CrossRefGoogle Scholar
  21. 21.
    Rosenberg J, Shenoi R V, Vandervelde T E, et al. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl Phys Lett, 2010, 95: 161101CrossRefGoogle Scholar
  22. 22.
    Alleyne C, Kirk A, McPhedran R. Enhanced spr sensitivity using periodic metallic structures. Opt Express, 2007, 15: 8163–8169CrossRefGoogle Scholar
  23. 23.
    Dionne J A, Diest K, Sweatlock L A, et al. Plasmostor: a metal-Oxide-Si field effect plasmonic modulator. Nano Lett, 2009, 9: 897–902CrossRefGoogle Scholar
  24. 24.
    Cai W S, White J S, Brongersma M L. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett, 2009, 9: 4403–4411CrossRefGoogle Scholar
  25. 25.
    Fan S H. Nanophotonics: magnet-controlled plasmons. Nat Photon, 2010, 4: 76–77CrossRefGoogle Scholar
  26. 26.
    Pala R A, Shimizu K T, Melosh N A, et al. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett, 2008, 8: 1506–1510CrossRefGoogle Scholar
  27. 27.
    Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of cdse quantum dots. Nat Photon, 2007, 1: 402–406CrossRefGoogle Scholar
  28. 28.
    Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189–193CrossRefGoogle Scholar
  29. 29.
    Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nat Mat, 2010, 9: 205–213CrossRefGoogle Scholar
  30. 30.
    Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials. Science, 2011, 331: 290–291CrossRefGoogle Scholar
  31. 31.
    Sorger V J, Oulton R F, Yao J, et al. Plasmonic fabry-pérot nanocavity. Nano Lett, 2009, 9: 3489–3493CrossRefGoogle Scholar
  32. 32.
    Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961CrossRefGoogle Scholar
  33. 33.
    Ruan Z C, Yan M, Neff C W, et al. Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys Rev Lett, 2007, 99: 113903CrossRefGoogle Scholar
  34. 34.
    Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett, 2007, 98: 266802CrossRefGoogle Scholar
  35. 35.
    Brongersma M L. Plasmonics: engineering optical nanoantennas. Nat Photon, 2008, 2: 270–272CrossRefGoogle Scholar
  36. 36.
    Veronis G, Dutton R W, Fan S H. Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range. J Appl Phys, 2005, 97: 093104CrossRefGoogle Scholar
  37. 37.
    Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun, 2011, 2: 517CrossRefGoogle Scholar
  38. 38.
    Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332: 702–704CrossRefGoogle Scholar
  39. 39.
    Raman A, Fan S H. Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem. Phys Rev Lett, 2010, 104: 087401CrossRefGoogle Scholar
  40. 40.
    Raman A, Fan S H. Perturbation theory for plasmonic modulation and sensing. Phys Rev B, 2011, 83: 205131CrossRefGoogle Scholar
  41. 41.
    Raman A, Shin W, Fan S H. Upper bound on the modal material loss rate in plasmonic and metamaterial systems. Phys Rev Lett, 2013, 110: 183901CrossRefGoogle Scholar
  42. 42.
    Drachev V P, Chettiar U K, Kildishev A V, et al. The ag dielectric function in plasmonic metamaterials. Opt Express, 2008, 16: 1186–1195CrossRefGoogle Scholar
  43. 43.
    Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain Method. 3rd ed. Artech House Publishers, 2005Google Scholar
  44. 44.
    Joseph R M, Hagness S C, Taflove A. Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt Lett, 1991, 16: 1412–1414CrossRefGoogle Scholar
  45. 45.
    Bhat N A R, Sipe J E. Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media. Phys Rev A, 2006, 73: 063808CrossRefGoogle Scholar
  46. 46.
    Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag, 1966, 14: 302–307zbMATHGoogle Scholar
  47. 47.
    Chen Y C, Sun K Q, Beker B, et al. Unified matrix presentation of Maxwell’s and wave equations using generalized differential matrix operators [em engineering education]. IEEE Trans Educ, 1998, 41: 61–69CrossRefGoogle Scholar
  48. 48.
    Lehoucq R B, Sorensen D C, Yang C. Arpack Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial & Applied, 1997Google Scholar
  49. 49.
    Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379CrossRefGoogle Scholar
  50. 50.
    Fan S H, Villeneuve P R, Joannopoulos J D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys Rev B, 1996, 54: 11245–11251CrossRefGoogle Scholar
  51. 51.
    Huang K C, Bienstman P, Joannopoulos J D, et al. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys Rev Lett, 2003, 90: 196402CrossRefGoogle Scholar
  52. 52.
    Chow E, Grot A, Mirkarimi L W, et al. Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity. Opt Lett, 2004, 29: 1093–1095CrossRefGoogle Scholar
  53. 53.
    Mortensen N, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals—enhanced light-matter interactions for lab-on-a-chip applications. Microfluid Nanofluid, 2008, 4: 117CrossRefGoogle Scholar
  54. 54.
    White I, Fan X. On the performance quantification of resonant refractive index sensors. Opt Express, 2008, 16: 1020–1028CrossRefGoogle Scholar
  55. 55.
    Robinson J, Chen L, Lipson M. On-chip gas detection in silicon optical microcavities. Opt Express, 2008, 16: 4296–4301CrossRefGoogle Scholar
  56. 56.
    Dell’Olio F, Passaro V. Optical sensing by optimized silicon slot waveguides. Opt Express, 2007, 15: 4977–4993CrossRefGoogle Scholar
  57. 57.
    Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008Google Scholar
  58. 58.
    Shao L H, Ruther M, Linden S, et al. Electromodulation of photonic metamaterials. In: Photonic Metamaterials and Plasmonics. Optical Society of America, 2010. MMC2Google Scholar
  59. 59.
    Diest K. Active metal-insulator-metal plasmonic devices. Dissertation of Doctoral Degree. California: California Institute of Technology, 2010Google Scholar
  60. 60.
    Guler U, Turan R. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express, 2010, 18: 17322–17338CrossRefGoogle Scholar
  61. 61.
    Loudon R. The propagation of electromagnetic energy through an absorbing dielectric. J Physics A-Gen Phys, 1970, 3: 233–245CrossRefGoogle Scholar
  62. 62.
    Ruppin R. Electromagnetic energy density in a dispersive and absorptive material. Phys Lett A, 2002, 299: 309–312CrossRefGoogle Scholar
  63. 63.
    Zhang S, Fan W J, Malloy K J, et al. Near-infrared double negative metamaterials. Opt Express, 2005, 13: 4922–4930CrossRefGoogle Scholar
  64. 64.
    Dolling G, Wegener M, Soukoulis C M, et al. Design-related losses of double-fishnet negative-index photonic metamaterials. Opt Express, 2007, 15: 11536–11541CrossRefGoogle Scholar
  65. 65.
    Oulton R F, Bartal G, Pile D F P, et al. Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys, 2008, 10: 105018CrossRefGoogle Scholar
  66. 66.
    Khurgin J B, Sun G. In search of the elusive lossless metal. Appl Phys Lett, 2010, 96: 181102CrossRefGoogle Scholar
  67. 67.
    Ferry V E, Munday J N, Atwater H A. Design considerations for plasmonic photovoltaics. Adv Mat, 2010, 22: 4794–4808CrossRefGoogle Scholar
  68. 68.
    Shin W, Fan S H. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J Comput Phys, 2012, 231: 3406–3431MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Schiff E A. Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals. J Appl Phys, 2012, 110: 104501CrossRefGoogle Scholar
  70. 70.
    Wang F, Shen Y R. General properties of local plasmons in metal nanostructures. Phys Rev Lett, 2006, 97: 206806CrossRefGoogle Scholar
  71. 71.
    Khurgin J B, Sun G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl Phys Lett, 2011, 99: 211106CrossRefGoogle Scholar
  72. 72.
    Bethe H A, Salpeter E E. Quantum Mechanics of One- and Two-Electron Atoms. Berlin: Springer-Verlag, 1957CrossRefzbMATHGoogle Scholar
  73. 73.
    Zeng Y, Dalvit D A R, O’Hara J, et al. Modal analysis method to describe weak nonlinear effects in metamaterials. Phys Rev B, 2012, 85: 125107CrossRefGoogle Scholar
  74. 74.
    Xi B, Xu H, Xiao S Y, et al. Theory of coupling in dispersive photonic systems. Phys Rev B, 2011, 83: 165115CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aaswath Pattabhi Raman
    • 1
  • Wonseok Shin
    • 1
  • ShanHui Fan
    • 1
  1. 1.Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations