Skip to main content
Log in

Epsilon-near-zero or mu-near-zero materials composed of dielectric photonic crystals

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We theoretically demonstrate that at certain frequencies two-dimensional dielectric photonic crystals (PCs) may be regarded as either epsilon-near-zero or mu-near-zero materials. We show that the transmission through a slab of such materials upon normal incidence is normally non-unity and decays with slab thickness. However, when the incident angle increases slightly, the transmittance experiences a dramatic increase due to the Brewster effect. The combination of the tunneling and resonance effects makes such materials good candidates for almost perfect bending waveguides and cloaking in waveguides. The zero index also enables applications of focusing and directive emission. At last, the distinction between the single-zero and double-zero media is discussed. In all of the above results, the numerical simulations perfectly match with theoretical predictions from the effective medium analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969

    Article  Google Scholar 

  2. Smith D R Padilla W J Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 2000, 84: 4184–4187

    Article  Google Scholar 

  3. Smith D R Pendry J B Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305: 788–792

    Article  Google Scholar 

  4. Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  5. Pendry J B Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Y M Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev, 2011, 40: 2494–2507

    Article  Google Scholar 

  7. Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission. Phys Rev Lett, 2002, 89: 213902

    Article  Google Scholar 

  8. Alú A, Silveirinha M G Salandrino A, et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B, 2007, 75: 155410

    Article  Google Scholar 

  9. Yuan Y, Shen L, Ran L, et al. Directive emission based on anisotropic metamaterials. Phys Rev A, 2008, 77: 053821

    Article  Google Scholar 

  10. Cheng Q, Jiang W X Cui T J. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials. J Phys D: Appl Phys, 2010, 43: 335406

    Article  Google Scholar 

  11. Cheng Q, Jiang W X Cui T J. Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials. Appl Phys Lett, 2011, 99: 131913

    Article  Google Scholar 

  12. Cheng Q, Jiang W X Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys Rev Lett, 2012, 108: 213903

    Article  Google Scholar 

  13. Luo J, Xu P, Gao L. Directive emission based on one-dimensional metal heterostructures. J Opt Soc Am B, 2012, 29: 35–39

    Article  Google Scholar 

  14. Yuan Y, Wang N, Lim J H. On the omnidirectional radiation via radially anisotropic zero-index metamaterials. Europhys Lett, 2012, 100: 34005

    Article  Google Scholar 

  15. Cheng Q, Cai B G Jiang W X, et al. Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials. Appl Phys Lett, 2012, 101: 141902

    Article  Google Scholar 

  16. Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using -near-zero materials. Phys Rev Lett, 2006, 97: 157403

    Article  Google Scholar 

  17. Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in ɛ-near-zero media. Phys Rev B, 2007, 75: 075119

    Article  Google Scholar 

  18. Silveirinha M G Engheta N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ-near-zero metamaterials. Phys Rev B, 2007, 76: 245109

    Article  Google Scholar 

  19. Alú A, Engheta N. Dielectric sensing in ɛ-near-zero narrow waveguide channels. Phys Rev B, 2008, 78: 045102

    Article  Google Scholar 

  20. Alú A, Silveirinha M G Engheta N. Transmission-line analysis of ɛ-near-zero-filled narrow channels. Phys Rev E, 2008, 78: 016604

    Article  Google Scholar 

  21. Liu R, Cheng Q, Hand T, et al. Experimental demonstration of electromagnetic tunneling through an varepsilonnear-zero metamaterial at microwave frequencies. Phys Rev Lett, 2008, 100: 023903

    Article  Google Scholar 

  22. Edwards B, Alú A, Young M E, et al. Experimental verification of ɛ-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys Rev Lett, 2008, 100: 033903

    Article  Google Scholar 

  23. Edwards B, Alú A, Silveirinha M G, et al. Reflectionless sharp bends and corners in waveguides using ɛ-near-zero effects. J Appl Phys, 2009, 105: 044905

    Article  Google Scholar 

  24. Alú A, Engheta N. Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. Phys Rev B, 2008, 78: 035440

    Article  Google Scholar 

  25. Hao J, Yan W, Qiu M. Super-reflection and cloaking based on zero index metamaterial. Appl Phys Lett, 2010, 96: 101109

    Article  Google Scholar 

  26. Jin Y, He S. Enhancing and suppressing radiation with some permeability-near-zero structures. Opt Express, 2010, 18: 16587–16593

    Article  Google Scholar 

  27. Nguyen V C Chen L, Halterman K. Total transmission and total reflection by zero index metamaterials with defects. Phys Rev Lett, 2010, 105: 233908

    Article  Google Scholar 

  28. Xu Y, Chen H. Total reflection and transmission by ɛ-near-zero metamaterials with defects. Appl Phys Lett, 2011, 98: 113501

    Article  Google Scholar 

  29. Luo J, Xu P, Gao L, et al. Manipulate the transmissions using index-near-zero or ɛ-near-zero metamaterials with coated defects. Plasmonics, 2012, 7: 353–358

    Article  Google Scholar 

  30. Ma H F Shi J H Cai B G, et al. Total transmission and super reflection realized by anisotropic zero-index materials. New J Phys, 2012, 14: 123010

    Article  Google Scholar 

  31. Zhu W, Rukhlenko I D Premaratne M. Light amplification in zero-index metamaterial with gain inserts. Appl Phys Lett, 2012, 101: 031907

    Article  Google Scholar 

  32. Zhang K, Fu J, Xiao L Y, et al. Total transmission and total reflection of electromagnetic waves by anisotropic ɛ-near-zero metamaterials embedded with dielectric defects. J Appl Phys, 2013, 113: 084908

    Article  Google Scholar 

  33. Wu Y, Li J. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl Phys Lett, 2013, 102: 183105

    Article  Google Scholar 

  34. Wang T, Luo J, Gao L, et al. Hiding objects and obtaining Fano resonances in index-near-zero and ɛ-near-zero metamaterials with Bragg-fiber-like defects. J Opt Soc Am B, 2013, 30: 1878–1884

    Article  Google Scholar 

  35. Engheta N, Salandrino A, Alú A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett, 2005, 95: 095504

    Article  Google Scholar 

  36. Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317: 1698–1702

    Article  Google Scholar 

  37. Alú A, Engheta N. All optical metamaterial circuit board at the nanoscale. Phys Rev Lett, 2009, 103: 143902

    Article  Google Scholar 

  38. Edwards B, Engheta N. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry. Phys Rev Lett, 2012, 108: 193902

    Article  Google Scholar 

  39. Sun Y, Edwards B, Alú A, et al. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat Mater, 2012, 11: 208–212

    Article  Google Scholar 

  40. Luo J, Xu P, Chen H, et al. Realizing almost perfect bending waveguides with anisotropic ɛ-near-zero metamaterials. Appl Phys Lett, 2012, 100: 221903

    Article  Google Scholar 

  41. Ma H F Shi J H Jiang W X, et al. Experimental realization of bending waveguide using anisotropic zero-index materials. Appl Phys Lett, 2012, 101: 253513

    Article  Google Scholar 

  42. Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys Rev B, 2006, 74: 075103

    Article  Google Scholar 

  43. Silveirinha M G Engheta N. Transporting an image through a subwavelength hole. Phys Rev Lett, 2009, 102: 103902

    Article  Google Scholar 

  44. Castaldi G, Savoia S, Galdi V, et al. Analytical study of subwavelength imaging by uniaxial ɛ-near-zero metamaterial slabs. Phys Rev B, 2012, 86: 115123

    Article  Google Scholar 

  45. Luo J, Chen H, Hou B, et al. Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal-dielectric multilayered structures with effective zero permittivity. Plasmonics, 2013, 8: 1095–1099

    Article  Google Scholar 

  46. Ziolkowski R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E, 2004, 70: 046608

    Article  Google Scholar 

  47. Alú A, Engheta N. Boosting molecular fluorescence with a plasmonic nanolauncher. Phys Rev Lett, 2009, 103: 043902

    Article  Google Scholar 

  48. Jin Y, Zhang P, He S. Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial. Phys Rev B, 2010, 81: 085117

    Article  Google Scholar 

  49. Adams D C Inampudi S, Ribaudo T, et al. Funneling light through a subwavelength aperture with ɛ-near-zero materials. Phys Rev Lett, 2011, 107: 133901

    Article  Google Scholar 

  50. Halterman K, Feng S, Nguyen V C. Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials. Phys Rev B, 2011, 84: 075162

    Article  Google Scholar 

  51. Li Y H Dong Z D Sun Y, et al. Ultra-deep stopband induced by spontaneous-emission-cancellation-like interference between two side-coupled zero-index-metamaterial-based resonators. Europhys Lett, 2012, 100: 34003

    Article  Google Scholar 

  52. Yanai A, Levy U. Radiation of a uniformly moving line charge in a zero-index metamaterial and other periodic media. Opt Express, 2012, 20: 18515–18524

    Article  Google Scholar 

  53. Luo J, Xu Y, Chen H, et al. Oblique total transmissions through ɛ-near-zero metamaterials with hyperbolic dispersions. Europhys Lett, 2013, 101: 44001

    Article  Google Scholar 

  54. Lu L, Wang J, Fang Y. Oblique total transmission through an anisotropic zero-epsilon metamaterial slab. Opt Laser Technol, 2013, 47: 4–9

    Article  Google Scholar 

  55. Massaouti M, Basharin A A Kafesaki M, et al. Eutectic ɛ-near-zero metamaterial terahertz waveguides. Opt Lett, 2013, 38: 1140–1142

    Article  Google Scholar 

  56. Basharin A A Mavidis C, Kafesaki M, et al. Epsilon near zero based phenomena in metamaterials. Phys Rev B, 2013, 87: 155130

    Article  Google Scholar 

  57. Davoyan A R Mahmoud A M Engheta N. Optical isolation with ɛ-near-zero metamaterials. Opt Express, 2013, 21: 3279–3286

    Article  Google Scholar 

  58. Sun F, Ma Y G Ge X, et al. Super-thin Mikaelian’s lens of small index as a beam compressor with an extremely high compression ratio. Opt Express, 2013, 21: 7328–7336

    Article  Google Scholar 

  59. Torres V, Pacheco-Peña V, Rodriguez-Ulibarri P, et al. Terahertz ɛ-near-zero graded-index lens. Opt Express, 2013, 21: 9156–9166

    Article  Google Scholar 

  60. Traviss D, Bruck R, Mills B, et al. Ultrafast plasmonics using transparent conductive oxide hybrids in the ɛ-near-zero regime. Appl Phys Lett, 2013, 102: 121112

    Article  Google Scholar 

  61. Powell D A Alú A, Edwards B, et al. Nonlinear control of tunneling through an ɛ-near-zero channel. Phys Rev B, 2009, 79: 245135

    Article  Google Scholar 

  62. Ciattoni A, Rizza C, Palange E. Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. Opt Lett, 2010, 35: 2130–2132

    Article  Google Scholar 

  63. Ciattoni A, Rizza C, Palange E. All-optical active plasmonic devices with memory and power-switching functionalities based on ɛ-near-zero nonlinear metamaterials. Phys Rev A, 2011, 83: 043813

    Article  Google Scholar 

  64. Vincenti M A Ceglia D D Ciattoni A, et al. Singularity-driven second- and third-harmonic generation at ɛ-near-zero crossing points. Phys Rev A, 2011, 84: 063826

    Article  Google Scholar 

  65. Argyropoulos C, Chen P Y Aguanno G D, et al. Boosting optical nonlinearities in -near-zero plasmonic channels. Phys Rev B, 2012, 85: 045129

    Article  Google Scholar 

  66. Vincenti M A Campione S, Ceglia D D, et al. Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells. New J Phys, 2012, 14: 103016

    Article  Google Scholar 

  67. Vesseur E J R Coenen T, Caglayan H, et al. Experimental verification of n = 0 structures for visible light. Phys Rev Lett, 2013, 110: 013902

    Article  Google Scholar 

  68. Adams D C Inampudi S, Ribaudo T, et al. Funneling light through a subwavelength aperture with ɛ-near-zero materials. Phys Rev Lett, 2012, 107: 133901

    Article  Google Scholar 

  69. Alekseyev L V Narimanov E E Tumkur T, et al. Uniaxial ɛ-near-zero metamaterial for angular filtering and polarization control. Appl Phys Lett, 2010, 97: 131107

    Article  Google Scholar 

  70. Subramania G, Fischer A J Luk T S. Optical properties of metal-dielectric based epsilon near zero metamaterials. Appl Phys Lett, 2012, 101: 241107

    Article  Google Scholar 

  71. Cai W, Shalaev V. Optical Metamaterials: Fundamentals and Applications. Berlin: Springer, 2009

    Google Scholar 

  72. Sun L, Yu K W. Strategy for designing broadband ɛ-near-zero metamaterial with loss compensation by gain media. Appl Phys Lett, 2012, 100: 261903

    Article  Google Scholar 

  73. Sun L, Yu K W. Strategy for designing broadband ɛ-near-zero metamaterials. J Opt Soc Am B, 2012, 29: 984–989

    Article  Google Scholar 

  74. Sun L, Yu K W Yang X. Integrated optical devices based on broadband ɛ-near-zero meta-atoms. Opt Lett, 2012, 37: 3096–3098

    Article  Google Scholar 

  75. Sun L, Gao J, Yang X. Broadband ɛ-near-zero metamaterials with steplike metal-dielectric multilayer structures. Phys Rev B, 2013, 87: 165134

    Article  Google Scholar 

  76. Feng S. Loss-induced omnidirectional bending to the normal in ɛ-near-zero metamaterials. Phys Rev Lett, 2012, 108: 193904

    Article  Google Scholar 

  77. Sun L, Feng S, Yang X. Loss enhanced transmission and collimation in anisotropic ɛ-near-zero metamaterials. Appl Phys Lett, 2012, 101: 241101

    Article  Google Scholar 

  78. Feng S, Halterman K. Coherent perfect absorption in ɛ-near-zero metamaterials. Phys Rev B, 2012, 86: 165103

    Article  Google Scholar 

  79. Shen L, Yang T J Chau Y F. 50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion. Appl Phys Lett, 2007, 90: 251909

    Article  Google Scholar 

  80. Shen L, Wu J J Yang T J. Anisotropic medium with parabolic dispersion. Appl Phys Lett, 2008, 92: 261905

    Article  Google Scholar 

  81. Luo J, Xu P, Sun T, et al. Tunable beam splitting and negative refraction in heterostructure with metamaterial. Appl Phys A, 2011, 104: 1137–1142

    Article  Google Scholar 

  82. Kwon D H Werner D H. Low-index metamaterial designs in the visible spectrum. Opt Express, 2007, 15: 9267–9272

    Article  Google Scholar 

  83. Huang X, Lai Y, Hang Z H, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractiveindex materials. Nat Mater, 2011, 10: 582–586

    Article  Google Scholar 

  84. Liu F, Lai Y, Huang X, et al. Dirac cones at k = 0 in phononic crystals. Phys Rev B, 2011, 84: 224113

    Article  Google Scholar 

  85. Chan C T Huang X, Liu F, et al. Dirac dispersion and zero-index in two dimensional and three dimensional photonic and phononic systems. Prog Electromagn Res B, 2012, 44: 163–190

    Google Scholar 

  86. Chan C T Hang Z H Huang X. Dirac dispersion in two-dimensional photonic crystals. Adv Optoelectron, 2012, 2012: 313984

    Article  Google Scholar 

  87. Lai Y, Wu Y, Sheng P, et al. Hybrid elastic solids. Nat Mater, 2011, 10: 620–624

    Article  Google Scholar 

  88. Berreman D W. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am, 1972, 62: 502–510

    Article  Google Scholar 

  89. Luo J, Xu P, Gao L. Electrically controllable unidirectional transmission in a heterostructure composed of a photonic crystal and a deformable liquid droplet. Solid State Commun, 2012, 152: 577–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Lai, Y. Epsilon-near-zero or mu-near-zero materials composed of dielectric photonic crystals. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-013-5029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5029-9

Keywords

Navigation