Science China Information Sciences

, Volume 56, Issue 11, pp 1–25 | Cite as

Research achievements on the new generation Internet architecture and protocols



Despite the great success achieved by the Internet, it has been facing increasingly severe technical challenges that include address exhaustion, low-level network security and trustworthiness, weak quality-of-service control capability, limited bandwidth, and poor support toward mobility. In this paper we summarize the principal challenges facing the current Internet, introduce the research status of the future Internet, analyze the principal design goals of the new generation Internet evaluation methods and models of the present Internet architecture, introduce the research achievements made under the new generation Internet architecture in detail, and propose our next-step research priorities and perspectives in the face of an increasing number of innovative Internet applications.


Internet technical challenges new generation Internet architecture evolvable architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koponen T, Shenker S, Balakrishnan H, et al. Architecting for Innovation. ACM SIGCOMM Comput Commun Rev, 2011, 41: 24–36CrossRefGoogle Scholar
  2. 2.
    Pan J, Paul S, Jain R. A survey of the research on future internet architectures. IEEE Commun Mag, 2011, 49: 26–36CrossRefGoogle Scholar
  3. 3.
    Rexford J, Dovrolis C. Future Internet architecture: clean-slate versus evolutionary research. Commun ACM, 2010, 53: 36–40CrossRefGoogle Scholar
  4. 4.
    Feldmann A. Internet clean-slate design: what and why? ACM SIGCOMM Comput Commun Rev, 2007, 37: 59–64CrossRefGoogle Scholar
  5. 5.
    Dovrolis C, Streelman J T. Evolvable network architectures: what can we learn from biology? ACM SIGCOMM Comput Commun Rev, 2010, 40: 72–77CrossRefGoogle Scholar
  6. 6.
    Dovrolis C. What would Darwin think about clean-slate architectures? ACM SIGCOMM Comput Commun Rev, 2008, 38: 29–34CrossRefGoogle Scholar
  7. 7.
    Shin M K, Nam K H, Kang M, et al. Formal specification framework for software-defined networks (SDN), draft-shinsdn-formal-specification-03. IETF Internet-Draft, 2013Google Scholar
  8. 8.
    Blumenthal M S, Clark D D. Rethinking the design of the Internet: the end-to-end arguments vs. the brave new world. ACM Trans Internet Technol, 2001, 1: 70–109CrossRefGoogle Scholar
  9. 9.
    Wu J, Liu Y, Wu Q. Theoretical research progress in new-generation Internet architecture. Sci China Ser F-Inf Sci, 2008, 51: 1634–1660CrossRefGoogle Scholar
  10. 10.
    Liu Y, Wu J, Wu Q, et al. Recent Progress in the Study of the Next Generation Internet in China. Phil Trans Roy Soc A-Math Phy Eng Sci, 2013, 37: 20120387CrossRefGoogle Scholar
  11. 11.
    Xu K, Xu M, Li Q, et al. Analysis and case study on multi-dimensional scalability of Internet architecture. Sci China Ser F-Inf Sci, 2008, 51: 1661–1680CrossRefGoogle Scholar
  12. 12.
    Wu J, Lin S, Xu K, et al. Advances in evolvable new generation internet architecture research (in Chinese). Chin J Comput, 2012, 35: 1094–1108Google Scholar
  13. 13.
    Clark D D. The design philosophy of the DARPA Internet protocols. ACM SIGCOMM Comput Commun Rev, 1995, 25: 102–111CrossRefGoogle Scholar
  14. 14.
    Kurose J. Networking: successes, new challenges, and an expanding waist, as the field approaches 40. In: IEEE INFOCOM 2004 (keynote talk), 2004Google Scholar
  15. 15.
    Xu K, Zhu M, Lin C. Internet Architecture Evaluation models mechanisms and methods (in Chinese). Chin J Comput, 2012, 35: 1–22CrossRefGoogle Scholar
  16. 16.
    Xu K, Zhu M, Wang N, et al. The 2ACT model-based evaluation for in-network caching mechanism. In: Proceedings of IEEE Symposium on Computers and Communications (ISCC), 2013.Google Scholar
  17. 17.
    Wu J, Ren G, Li X. Source address validation: architecture and protocol design. In: Proceedings of IEEE International Conference on Network Protocols, Beijing, 2007. 276–283Google Scholar
  18. 18.
    Wu J, Ren G, Li X. Building a next generation Internet with source address validation architecture. Sci China Ser F-Inf Sci, 2008, 51: 1681–1691CrossRefGoogle Scholar
  19. 19.
    Wu J, Bi J, Li X, et al. A Source Address Validation Architecture (Sava) Testbed and Deployment Experience. IETF RFC 5210, 2008Google Scholar
  20. 20.
    Wu J, Bi J, Bagnulo M, et al. Source Address Validation Improvement Framework. draft-ietf-savi-framework-06. IETF Internet-Draft, 2011Google Scholar
  21. 21.
    Bi J, Wu J, Yao G, et al. SAVI Solution for DHCP. draft-ietf-savi-dhcp-16. IETF Internet-Draft, 2013Google Scholar
  22. 22.
    Bi J, Yao G, Halpern J, et al. SAVI for Mixed Address Assignment Methods Scenario. draft-ietf-savi-mix-04. IETF Internet-Draft, 2013Google Scholar
  23. 23.
    Bagnulo M, Garcia-Martinez A. SEND-based Source-Address Validation Implementation. draft-ietf-savi-send-10. IETF Internet-Draft, 2013Google Scholar
  24. 24.
    Zhang D, Nallur P, Wasserman M. Cryptographically Generated Address (CGA) Extension Header for Internet Protocol version 6 (IPv6). draft-dong-savi-cga-header-03. IETF Internet-Draft, 2010Google Scholar
  25. 25.
    Kuptsov D, Gurtov A, Bi J. SAVAH: Source Address Validation Architecture with Host Identity Protocol. draftkuptsov-sava-hip-01. IETF Internet-Draft, 2009Google Scholar
  26. 26.
    Levy-Abegnoli E. Preference Level Based Binding Table. draft-levy-abegnoli-savi-plbt-02. IETF Internet-Draft, 2010Google Scholar
  27. 27.
    Aura T. Cryptographically Generated Addresses (CGA). IETF RFC 3972, 2005Google Scholar
  28. 28.
    Yao G, Bi J, Xiao P. VASE: filtering IP spoofing traffic with agility. Comput Netw, 2013, 57: 243–257CrossRefGoogle Scholar
  29. 29.
    Yao G, Bi J, Xiao P. Source address validation solution with OpenFlow/NOX architecture. In: Proceedings of IEEE International Conference on Network Protocols, Vancouver, 2011. 7–12Google Scholar
  30. 30.
    Li J, Mirkovic J, Wang M, et al. SAVE: source address validity enforcement protocol. In: Proceedings of IEEE Computer and Communications Societies. New York: IEEE, 2002. 1557–1566Google Scholar
  31. 31.
    Liu B, Bi J, Zhu Y. A Deployable Approach for Inter-AS Anti-spoofing. In: Proceedings of the 19th IEEE International Conference on Network Protocols (ICNP), Vancouver, 2011. 19–24Google Scholar
  32. 32.
    Bremler-Barr A, Levy H. Spoofing prevention method. In: Proceedings of IEEE Computer and Communications Societies. Washington DC: IEEE, 2005, 531: 536–547Google Scholar
  33. 33.
    Baker F, Savola P. Ingress Filtering for Multihomed Networks. IETF RFC 3704, 2004Google Scholar
  34. 34.
    Duan, Z, Yuan X, Chandrashekar J. Constructing inter-domain packet filters to control IP spoofingng based on BGP updates. In: Proceedings of IEEE Computer and Communications Societies, Barcelona, 2006. 1–12Google Scholar
  35. 35.
    Lee H, Kwon M, Hasker G, et al. BASE: an incrementally deployable mechanism for viable IP spoofing prevention. In: Proceedings of ACM Symposium on Information, Computer and Communication Security. New York: ACM, 2007. 20–31Google Scholar
  36. 36.
    Wu J, Cui Y, Li X, et al. 4over6 Transit Solution Using IP Encapsulation and MP-BGP Extensions. IETF RFC 5747, 2010Google Scholar
  37. 37.
    Wu J, Cui Y, Metz C, et al. Softwire Mesh Framework. IETF RFC 5565, 2009Google Scholar
  38. 38.
    Wu P, Cui Y, Xu M, et al. PET: prefixing, encapsulation and translation for IPv4-IPv6 coexistence. In: Proceedings IEEE Global Communications Conference, Miami, 2010. 1–5Google Scholar
  39. 39.
    Cui Y, Wu J, Wu P, et al. Public IPv4 over Access IPv6 Network. draft-ietf-softwire-public-4over6-09. IETF Internet-Draft, 2013Google Scholar
  40. 40.
    Cui Y, Wu J, Wu P, et al. Lightweight 4over6 in Access Network. draft-cui-softwire-b4-translated-ds-lite-11. IETF Internet-Draft. 2013Google Scholar
  41. 41.
    Xu Y, Yang H, Ren F, et al. Frequency Domain Packet Scheduling with MIMO for 3GPP LTE Downlink. IEEE Trans Wirel Communs, 2013, 12: 1752–1761CrossRefGoogle Scholar
  42. 42.
    Huang B, Sun Z, Chen H, et al. BufferBank: a distributed cache infrastructure for peer-to-peer application. Peer-to-Peer Netw Appls, 2012, doi: 10.1007/s12083-012-0165-3Google Scholar
  43. 43.
    Bai J, Sun Z. Packet classification algorithm based on bloom filter (in Chinese). Comput Eng, 2009, 35: 108–110Google Scholar
  44. 44.
    Wu J, Wang J, Yang J. CNGI-CERNET2: an IPv6 deployment in China. ACM SIGCOMM Comput Commun Rev, 2011, 41: 48–52CrossRefGoogle Scholar
  45. 45.
    Xiang Y, Wang Z, Yin X, et al. Argus: an accurate and agile system to detecting IP prefix hijacking. In: Proceedings of the 19th IEEE International Conference on Network Protocols, Vancouver, 2011. 43–48Google Scholar
  46. 46.
    Jiang J, Liang J, Li K, et al. Ghost domain names: revoked yet still resolvable. In: Proceedings of the Annual Network & Distributed System Security Symposium, San Diego, 2012. 1–9Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology (TNList)BeijingChina
  2. 2.Institute for Network Sciences and CyberspaceTsinghua UniversityBeijingChina
  3. 3.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations