A distributed computational cognitive model for object recognition


Based on cognitive functionalities in human vision processing, we propose a computational cognitive model for object recognition with detailed algorithmic descriptions. The contribution of this paper is of two folds. Firstly, we present a systematic review on psychological and neurophysiological studies, which provide collective evidence for a distributed representation of 3D objects in the human brain. Secondly, we present a computational model which simulates the distributed mechanism of object vision pathway. Experimental results show that the presented computational cognitive model outperforms five representative 3D object recognition algorithms in computer science research.

This is a preview of subscription content, access via your institution.


  1. 1

    Horn B. Extended Guassian images. Proc IEEE, 1984, 72: 1671–1686

    Article  Google Scholar 

  2. 2

    Johnson A, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Patt Anal Mach Intell, 1999, 21: 433–449

    Article  Google Scholar 

  3. 3

    Elbaz A, Kimmel R. On bending invariant signatures for surfaces. IEEE Trans Patt Anal Mach Intell, 2003, 25: 1285–1295

    Article  Google Scholar 

  4. 4

    Funkhouser T, Min P, Kazhdan M, et al. A search engine for 3D models. ACM Trans Graph, 2003, 22: 83–105

    Article  Google Scholar 

  5. 5

    Liu Y, Chen Z, Tang K. Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Trans Patt Anal Mach Intell, 2011, 33: 1502–1517

    Article  Google Scholar 

  6. 6

    Goodale M, Milner A. Separate visual pathways for perception and action. Trends Neurosci, 1992, 15: 20–25

    Article  Google Scholar 

  7. 7

    Fu X, Cai L, Liu Y, et al. A computational cognition model of perception, memory, and judgment. Sci China Inf Sci, 2013, 56, doi: 10.1007/s11432-013-4911-9

    Google Scholar 

  8. 8

    Kanwisher N, McDermott J, Chun M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci, 1997, 17: 4302–4311

    Google Scholar 

  9. 9

    Puce A, Allison T, Gore J, et al. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol, 1995, 74: 1192–1199

    Google Scholar 

  10. 10

    Epstein R, Harris A, Stanley D, et al. The parahippocampal place area: recognition, navigation, or encoding? Neuron, 1999, 23: 115–125

    Article  Google Scholar 

  11. 11

    Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature, 1998, 392: 598–601

    Article  Google Scholar 

  12. 12

    O’Craven K, Kanwisher N. Mental imagery of faces and places activates corresponding stiimulus-specific brain regions. J Cognitive Neurosci, 2000, 12: 1013–1023

    Article  Google Scholar 

  13. 13

    Malach R, Reppas J, Benson R, et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Nat Acad Sci USA, 1995, 92: 8135–8139

    Article  Google Scholar 

  14. 14

    Haxby J, Gobbini M, Furey M, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 2001, 293: 2425–2430

    Article  Google Scholar 

  15. 15

    Ishai A, Ungerleider L, Martin A, et al. Distributed representation of objects in the human ventral visual pathway. Proc Nat Acad Sci USA, 1999, 96: 9379–9384

    Article  Google Scholar 

  16. 16

    Biederman I. Recognition-by-components: a theory of human image understanding. Psychol Rev, 1987, 94: 115–147

    Article  Google Scholar 

  17. 17

    Tarr M, Williams P, Hayward W, et al. Three-dimensional object recognition is viewpoint dependent. Nat Neurosci, 1998, 1: 275–277

    Article  Google Scholar 

  18. 18

    Cahill L, McGaugh J. Mechanisms of emotional arousal and lasting declarative memory. Proc Nat Acad Sci USA, 1992, 89: 60–64

    Article  Google Scholar 

  19. 19

    Jolicoeur P. Orientation congruency effects on the indentification of disoriented shapes. J Exp Psychol-Hum Percep Perf, 1990, 16: 351–364

    Article  Google Scholar 

  20. 20

    Tarr M, Pinker S. Mental rotation and orientation-dependence in shape recognition. Cog Psychol, 1989, 21: 233–282

    Article  Google Scholar 

  21. 21

    Haxby J, Ishai A, Chao L, et al. Object-form topology in the ventral temporal lobe. Trends Cogn Sci, 2000, 4: 3–4

    Article  Google Scholar 

  22. 22

    Walther D, Chai B, Caddigan E, et al. Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc Nat Acad Sci USA, 2011, 108: 9661–9666

    Article  Google Scholar 

  23. 23

    Liu Y, Luo X, Xuan Y, et al. Image retargeting quality assessment. Comput Graph Forum, 2011, 30: 583–592

    Article  Google Scholar 

  24. 24

    Biederman I, Ju G. Surface versus edge-based determinants of visual recognition. Cog Psychol, 1988, 20: 38–64

    Article  Google Scholar 

  25. 25

    Mehta R, Zhu R. Blue or red? Exploring the effect of color on cogntive task performances. Science, 2009, 323: 1226–1229

    Article  Google Scholar 

  26. 26

    Liu Y, Zheng Y, Lv L, et al. 3D model retrieval based on color+geometry signatures. Vis Comput, 2012, 28: 75–86

    Article  Google Scholar 

  27. 27

    Fu Q, Liu Y, Chen W, et al. The time course of natural scene categorization in human brain: simple line-drawings vs. color photographs. J Vision, 2013, 13: 1060

    Article  Google Scholar 

  28. 28

    Davenport J, Potter M. Scene consistency in object and background perception. Psychol Sci, 2004, 15: 559–564

    Article  Google Scholar 

  29. 29

    Peelen M, Li F F, Kastner S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 2009, 460: 94–97

    Article  Google Scholar 

  30. 30

    Walther D, Caddigan E, Li F F, et al. Natural scene categories revealed in distributed patterns of activity in the human brain. J Neurosci, 2009, 29: 10573–10581

    Article  Google Scholar 

  31. 31

    Bar M. Visual objects in context. Nat Rev Neurosci, 2004, 5: 617–629

    Article  Google Scholar 

  32. 32

    McClelland J, Rumelhart D. Distributed memory and the representation of general and specific information. J Exp Psychol-Gen, 1985, 114: 159–188

    Article  Google Scholar 

  33. 33

    Medin D, Schaffer M. Context theory of classification learning. Psychol Rev, 1978, 85: 207–238

    Article  Google Scholar 

  34. 34

    Possner M, Keele S. Retention of abstract ideas. J Exp Psychol, 1970, 83: 304–308

    Article  Google Scholar 

  35. 35

    Chklovskii D, Mel B, Svoboda K. Cortical rewiring and information storage. Nature, 2004, 431: 782–788

    Article  Google Scholar 

  36. 36

    McGaugh J. Memory-a century of consolidation. Science, 2000, 287: 248–251

    Article  Google Scholar 

  37. 37

    Bulthoff H, Edelman S. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Trends Neurosci, 1998, 21: 294–299

    Article  Google Scholar 

  38. 38

    Trachtenberg J, Chen B, Knott G, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 2002, 420: 788–794

    Article  Google Scholar 

  39. 39

    Wallis G, Bulthoff H. Learning to recognize objects. Trends Cogn Sci, 1999, 3: 22–31

    Article  Google Scholar 

  40. 40

    Schyns P. Categories and percepts: a bi-directionnal framework for categorization. Trends Cogn Sci, 1997, 1: 183–189

    Article  Google Scholar 

  41. 41

    Miyashita Y. Neural correlate of visual associative long-term memory in the primate temporal. Nature, 1988, 335: 817–820

    Article  Google Scholar 

  42. 42

    Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci, 1993, 16: 245–263

    Article  Google Scholar 

  43. 43

    Stryker M. Temporal associations. Nature, 1991, 354: 108–109

    Article  Google Scholar 

  44. 44

    Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci, 1996, 19: 109–139

    Article  Google Scholar 

  45. 45

    Leopold D, O’Toole A, Vetter T, et al. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci, 2001, 4: 89–94

    Article  Google Scholar 

  46. 46

    Pellicano E, Rhodes G. Holistic processing of faces in preschool children and adults. Psychol Sci, 2003, 14: 618–622

    Article  Google Scholar 

  47. 47

    Anderson J. The Architecture of Cognition. Cambridge: Harvard University Press, 1983

    Google Scholar 

  48. 48

    Massaro D. Some criticisms of connectionist models of human performance. J Mem Lang, 1988, 27: 213–234

    Article  Google Scholar 

  49. 49

    Kang H, Lee S, Chui C. Coherent line drawing. In: Proceedings of 5th International Symposium on Non-photorealistic Animation and Rendering. New York: ACM, 2007. 43–50

    Google Scholar 

  50. 50

    Liu Y, Fu Q, Liu Y, et al. 2D-line-drawing-based 3D object recognition. In: Proceedings of 1st International Conference on Computational Visual Media. Berlin/Heidelberg: Springer-Verlag, 2012. 146–153

    Google Scholar 

  51. 51

    Liu Y, Luo X, Joneja A, et al. User-adaptive sketch-based 3D CAD model retrieval. IEEE Trans Autom Sci Eng, 2013, 10: 783–795

    Article  Google Scholar 

  52. 52

    Wang L, Zhang Y, Feng J. On the Euclidean distance of images. IEEE Trans Patt Anal Mach Intell, 2005, 27: 1334–1339

    Article  Google Scholar 

  53. 53

    Frey B, Dueck D. Clustering by passing messages between data points. Science, 2007, 315: 972–976

    MathSciNet  Article  MATH  Google Scholar 

  54. 54

    Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. Boston: Addison-Wesley Longman Publishing Co., Inc. 1999

    Google Scholar 

  55. 55

    Liu Y. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Comput Aid Des, 2013, 45: 695–704

    Article  Google Scholar 

  56. 56

    Ma C, Liu Y, Yang H, et al. KnitSketch: a sketch pad for conceptual design of 2D garment patterns. IEEE Trans Autom Sci Eng, 2011, 8: 431–437

    Article  Google Scholar 

  57. 57

    Liu Y, Ma C, Zhang D. EasyToy: plush toy design using editable sketching curves. IEEE Comput Graph Appl, 2011, 31: 49–57

    Article  Google Scholar 

  58. 58

    Ma C, Liu Y, Wang H, et al. Sketch-based annotation and visualization in video authoring. IEEE Trans Multimedia, 2012, 14: 1153–1165

    Article  Google Scholar 

  59. 59

    Ma C, Liu Y, Fu Q, et al. Video sketch summarization, interaction and cognition analysis (in Chinese). Sci Sin Inf, 2013, 43, doi: 10.1360/112013-1

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to YongJin Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Y., Fu, Q., Liu, Y. et al. A distributed computational cognitive model for object recognition. Sci. China Inf. Sci. 56, 1–13 (2013). https://doi.org/10.1007/s11432-013-4994-3

Download citation


  • distributed cognition
  • computational model
  • object recognition
  • human vision system