Science China Information Sciences

, Volume 56, Issue 9, pp 1–13 | Cite as

A distributed computational cognitive model for object recognition

Research Paper Special Focus

Abstract

Based on cognitive functionalities in human vision processing, we propose a computational cognitive model for object recognition with detailed algorithmic descriptions. The contribution of this paper is of two folds. Firstly, we present a systematic review on psychological and neurophysiological studies, which provide collective evidence for a distributed representation of 3D objects in the human brain. Secondly, we present a computational model which simulates the distributed mechanism of object vision pathway. Experimental results show that the presented computational cognitive model outperforms five representative 3D object recognition algorithms in computer science research.

Keywords

distributed cognition computational model object recognition human vision system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn B. Extended Guassian images. Proc IEEE, 1984, 72: 1671–1686CrossRefGoogle Scholar
  2. 2.
    Johnson A, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Patt Anal Mach Intell, 1999, 21: 433–449CrossRefGoogle Scholar
  3. 3.
    Elbaz A, Kimmel R. On bending invariant signatures for surfaces. IEEE Trans Patt Anal Mach Intell, 2003, 25: 1285–1295CrossRefGoogle Scholar
  4. 4.
    Funkhouser T, Min P, Kazhdan M, et al. A search engine for 3D models. ACM Trans Graph, 2003, 22: 83–105CrossRefGoogle Scholar
  5. 5.
    Liu Y, Chen Z, Tang K. Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Trans Patt Anal Mach Intell, 2011, 33: 1502–1517CrossRefGoogle Scholar
  6. 6.
    Goodale M, Milner A. Separate visual pathways for perception and action. Trends Neurosci, 1992, 15: 20–25CrossRefGoogle Scholar
  7. 7.
    Fu X, Cai L, Liu Y, et al. A computational cognition model of perception, memory, and judgment. Sci China Inf Sci, 2013, 56, doi: 10.1007/s11432-013-4911-9Google Scholar
  8. 8.
    Kanwisher N, McDermott J, Chun M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci, 1997, 17: 4302–4311Google Scholar
  9. 9.
    Puce A, Allison T, Gore J, et al. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol, 1995, 74: 1192–1199Google Scholar
  10. 10.
    Epstein R, Harris A, Stanley D, et al. The parahippocampal place area: recognition, navigation, or encoding? Neuron, 1999, 23: 115–125CrossRefGoogle Scholar
  11. 11.
    Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature, 1998, 392: 598–601CrossRefGoogle Scholar
  12. 12.
    O’Craven K, Kanwisher N. Mental imagery of faces and places activates corresponding stiimulus-specific brain regions. J Cognitive Neurosci, 2000, 12: 1013–1023CrossRefGoogle Scholar
  13. 13.
    Malach R, Reppas J, Benson R, et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Nat Acad Sci USA, 1995, 92: 8135–8139CrossRefGoogle Scholar
  14. 14.
    Haxby J, Gobbini M, Furey M, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 2001, 293: 2425–2430CrossRefGoogle Scholar
  15. 15.
    Ishai A, Ungerleider L, Martin A, et al. Distributed representation of objects in the human ventral visual pathway. Proc Nat Acad Sci USA, 1999, 96: 9379–9384CrossRefGoogle Scholar
  16. 16.
    Biederman I. Recognition-by-components: a theory of human image understanding. Psychol Rev, 1987, 94: 115–147CrossRefGoogle Scholar
  17. 17.
    Tarr M, Williams P, Hayward W, et al. Three-dimensional object recognition is viewpoint dependent. Nat Neurosci, 1998, 1: 275–277CrossRefGoogle Scholar
  18. 18.
    Cahill L, McGaugh J. Mechanisms of emotional arousal and lasting declarative memory. Proc Nat Acad Sci USA, 1992, 89: 60–64CrossRefGoogle Scholar
  19. 19.
    Jolicoeur P. Orientation congruency effects on the indentification of disoriented shapes. J Exp Psychol-Hum Percep Perf, 1990, 16: 351–364CrossRefGoogle Scholar
  20. 20.
    Tarr M, Pinker S. Mental rotation and orientation-dependence in shape recognition. Cog Psychol, 1989, 21: 233–282CrossRefGoogle Scholar
  21. 21.
    Haxby J, Ishai A, Chao L, et al. Object-form topology in the ventral temporal lobe. Trends Cogn Sci, 2000, 4: 3–4CrossRefGoogle Scholar
  22. 22.
    Walther D, Chai B, Caddigan E, et al. Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc Nat Acad Sci USA, 2011, 108: 9661–9666CrossRefGoogle Scholar
  23. 23.
    Liu Y, Luo X, Xuan Y, et al. Image retargeting quality assessment. Comput Graph Forum, 2011, 30: 583–592CrossRefGoogle Scholar
  24. 24.
    Biederman I, Ju G. Surface versus edge-based determinants of visual recognition. Cog Psychol, 1988, 20: 38–64CrossRefGoogle Scholar
  25. 25.
    Mehta R, Zhu R. Blue or red? Exploring the effect of color on cogntive task performances. Science, 2009, 323: 1226–1229CrossRefGoogle Scholar
  26. 26.
    Liu Y, Zheng Y, Lv L, et al. 3D model retrieval based on color+geometry signatures. Vis Comput, 2012, 28: 75–86CrossRefGoogle Scholar
  27. 27.
    Fu Q, Liu Y, Chen W, et al. The time course of natural scene categorization in human brain: simple line-drawings vs. color photographs. J Vision, 2013, 13: 1060CrossRefGoogle Scholar
  28. 28.
    Davenport J, Potter M. Scene consistency in object and background perception. Psychol Sci, 2004, 15: 559–564CrossRefGoogle Scholar
  29. 29.
    Peelen M, Li F F, Kastner S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 2009, 460: 94–97CrossRefGoogle Scholar
  30. 30.
    Walther D, Caddigan E, Li F F, et al. Natural scene categories revealed in distributed patterns of activity in the human brain. J Neurosci, 2009, 29: 10573–10581CrossRefGoogle Scholar
  31. 31.
    Bar M. Visual objects in context. Nat Rev Neurosci, 2004, 5: 617–629CrossRefGoogle Scholar
  32. 32.
    McClelland J, Rumelhart D. Distributed memory and the representation of general and specific information. J Exp Psychol-Gen, 1985, 114: 159–188CrossRefGoogle Scholar
  33. 33.
    Medin D, Schaffer M. Context theory of classification learning. Psychol Rev, 1978, 85: 207–238CrossRefGoogle Scholar
  34. 34.
    Possner M, Keele S. Retention of abstract ideas. J Exp Psychol, 1970, 83: 304–308CrossRefGoogle Scholar
  35. 35.
    Chklovskii D, Mel B, Svoboda K. Cortical rewiring and information storage. Nature, 2004, 431: 782–788CrossRefGoogle Scholar
  36. 36.
    McGaugh J. Memory-a century of consolidation. Science, 2000, 287: 248–251CrossRefGoogle Scholar
  37. 37.
    Bulthoff H, Edelman S. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Trends Neurosci, 1998, 21: 294–299CrossRefGoogle Scholar
  38. 38.
    Trachtenberg J, Chen B, Knott G, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 2002, 420: 788–794CrossRefGoogle Scholar
  39. 39.
    Wallis G, Bulthoff H. Learning to recognize objects. Trends Cogn Sci, 1999, 3: 22–31CrossRefGoogle Scholar
  40. 40.
    Schyns P. Categories and percepts: a bi-directionnal framework for categorization. Trends Cogn Sci, 1997, 1: 183–189CrossRefGoogle Scholar
  41. 41.
    Miyashita Y. Neural correlate of visual associative long-term memory in the primate temporal. Nature, 1988, 335: 817–820CrossRefGoogle Scholar
  42. 42.
    Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci, 1993, 16: 245–263CrossRefGoogle Scholar
  43. 43.
    Stryker M. Temporal associations. Nature, 1991, 354: 108–109CrossRefGoogle Scholar
  44. 44.
    Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci, 1996, 19: 109–139CrossRefGoogle Scholar
  45. 45.
    Leopold D, O’Toole A, Vetter T, et al. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci, 2001, 4: 89–94CrossRefGoogle Scholar
  46. 46.
    Pellicano E, Rhodes G. Holistic processing of faces in preschool children and adults. Psychol Sci, 2003, 14: 618–622CrossRefGoogle Scholar
  47. 47.
    Anderson J. The Architecture of Cognition. Cambridge: Harvard University Press, 1983Google Scholar
  48. 48.
    Massaro D. Some criticisms of connectionist models of human performance. J Mem Lang, 1988, 27: 213–234CrossRefGoogle Scholar
  49. 49.
    Kang H, Lee S, Chui C. Coherent line drawing. In: Proceedings of 5th International Symposium on Non-photorealistic Animation and Rendering. New York: ACM, 2007. 43–50Google Scholar
  50. 50.
    Liu Y, Fu Q, Liu Y, et al. 2D-line-drawing-based 3D object recognition. In: Proceedings of 1st International Conference on Computational Visual Media. Berlin/Heidelberg: Springer-Verlag, 2012. 146–153CrossRefGoogle Scholar
  51. 51.
    Liu Y, Luo X, Joneja A, et al. User-adaptive sketch-based 3D CAD model retrieval. IEEE Trans Autom Sci Eng, 2013, 10: 783–795CrossRefGoogle Scholar
  52. 52.
    Wang L, Zhang Y, Feng J. On the Euclidean distance of images. IEEE Trans Patt Anal Mach Intell, 2005, 27: 1334–1339CrossRefGoogle Scholar
  53. 53.
    Frey B, Dueck D. Clustering by passing messages between data points. Science, 2007, 315: 972–976MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. Boston: Addison-Wesley Longman Publishing Co., Inc. 1999Google Scholar
  55. 55.
    Liu Y. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Comput Aid Des, 2013, 45: 695–704CrossRefGoogle Scholar
  56. 56.
    Ma C, Liu Y, Yang H, et al. KnitSketch: a sketch pad for conceptual design of 2D garment patterns. IEEE Trans Autom Sci Eng, 2011, 8: 431–437CrossRefGoogle Scholar
  57. 57.
    Liu Y, Ma C, Zhang D. EasyToy: plush toy design using editable sketching curves. IEEE Comput Graph Appl, 2011, 31: 49–57CrossRefGoogle Scholar
  58. 58.
    Ma C, Liu Y, Wang H, et al. Sketch-based annotation and visualization in video authoring. IEEE Trans Multimedia, 2012, 14: 1153–1165CrossRefGoogle Scholar
  59. 59.
    Ma C, Liu Y, Fu Q, et al. Video sketch summarization, interaction and cognition analysis (in Chinese). Sci Sin Inf, 2013, 43, doi: 10.1360/112013-1Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.State Key Lab of Brain and Cognitive Science, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations