Skip to main content
Log in

Video color conceptualization using optimization

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Color conceptualization aims to propagate “color concepts” from a library of natural color images to the input image by changing the main color. However, the existing method may lead to spatial discontinuities in images because of the absence of a spatial consistency constraint. In this paper, to solve this problem, we present a novel method to force neighboring pixels with similar intensities to have similar color. Using this constraint, the color conceptualization is formalized as an optimization problem with a quadratic cost function. Moreover, we further expand two-dimensional (still image) color conceptualization to three-dimensional (video), and use the information of neighboring pixels in both space and time to improve the consistency between neighboring frames. The performance of our proposed method is demonstrated for a variety of images and video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csurka G, Skaff S, Marchesotti L, et al. Building look & feel concept models from color combinations. Vis Comput, 2011, 27: 1039–1053

    Article  Google Scholar 

  2. Welsh T, Ashikhmin M, Mueller K. Transferring color to greyscale images. ACM Trans Graph, 2002, 21: 277–280

    Article  Google Scholar 

  3. Irony R, Cohen-Or D, Lischinski D. Colorization by example. In: Proceedings of the 16th Eurographics Conference on Rendering Techniques. Switzerland: Eurographics Association Aire-la-Ville, 2005. 201–210

    Google Scholar 

  4. Charpiat G, Hofmann M, Scholkopf B. Automatic image colorization via multimodal predictions. In: Proceedings of the 10th European Conference on Computer Vision. Berlin/Heidelberg: Springer-Verlag, 2008. 126–139

    Google Scholar 

  5. Reinhard E, Ashikhmin M, Gooch B, et al. Color transfer between images. IEEE Comput Graph Appl, 2001, 21: 34–41

    Article  Google Scholar 

  6. Liu X P, Wan L, Qu Y G, et al. Intrinsic colorization. ACM Trans Graph, 2008, 27: 152–152

    Article  Google Scholar 

  7. Chia A, Zhuo S J, Gupta R, et al. Semantic colorization with Internet images. ACM Trans Graph, 2011, 30: 156–156

    Article  Google Scholar 

  8. Levin A, Lischinski D, Weiss Y. Colorization using optimization. ACM Trans Graph, 2004, 23: 689–694

    Article  Google Scholar 

  9. Yatziv L, Sapiro G. Fast image and video colorization using chrominance blending. IEEE Trans Image Process, 2006, 15: 1120–1129

    Article  Google Scholar 

  10. Cohen-Or D, Sorkine O, Gal R, et al. Color harmonization. ACM Trans Graphics, 2006, 25: 624–630

    Article  Google Scholar 

  11. Tang Z, Miao Z J, Wan Y L, et al. Color harmonization for images. J Electron Imag, 2011, 20: 023001

    Article  Google Scholar 

  12. Hou X D, Zhang L Q. Colour conceptualization. In: Proceedings of the 15th ACM International Conference on Multimedia. New York: ACM, 2007. 265–268

    Google Scholar 

  13. Xu M D, Ni B B, Tang J H, et al. Image re-emotionalizing. In: Jin J S, Xu C S, Xu M, eds. The Era of Interactive Media. Berlin: Springer, 2013. 3–14

    Chapter  Google Scholar 

  14. Lee Y, Kim J, Grauman K. Key-segments for video object segmentation. In: Proceedings of IEEE International Conference on Computer Vision, Barcelona, 2011. 1995–2002

    Google Scholar 

  15. Zhang B, Zhao H D, Cao X C. Video object segmentation with shortest path. In: Proceedings of the 20th ACM International Conference on Multimedia. New York: ACM, 2012. 801–804

    Chapter  Google Scholar 

  16. Hanbury A. Constructing cylindrical coordinate colour spaces. Patt Recognition Image Process Group, 2008, 29: 494–500

    Google Scholar 

  17. Liu Y, Zhang D S, Lu G J, et al. Region-based image retrieval with high-level semantic color names. In Proceedings of IEEE 11th International Multi-Media Modelling Conference, Melbourne, 2005. 180–187

    Google Scholar 

  18. Goldstein E. Sensation and perception, 5th ed. Brooks/Cole, 1999

    Google Scholar 

  19. Berk T, Brownston L, Kaufmann A. A new color-naming system for graphics languages. IEEE Comput Graph Appl, 1982, 2: 37–44

    Article  Google Scholar 

  20. Weiss Y. Segmentation using eigenvectors: a unifying view. In: Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, 1999. 975–982

    Chapter  Google Scholar 

  21. Lee H, Yu J, Im Y, et al. A unified scheme of shot boundary detection and anchor shot detection in news video story parsing. Multimed Tools Appl, 2011, 51: 1127–1145

    Article  Google Scholar 

  22. Amudha J, Radha D, Naresh P. Video shot detection using saliency measure. Int J Comput Appl, 2012, 45: 17–24

    Google Scholar 

  23. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell, 2000, 22: 888–905

    Article  Google Scholar 

  24. Morovic J, Luo M. The fundamentals of gamut mapping: a survey. J Imag Sci Technol, 2001, 45: 283–290

    Google Scholar 

  25. Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis, 2001, 42: 145–175

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoChun Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zhang, Y., Guo, X. et al. Video color conceptualization using optimization. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-013-4934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4934-2

Keywords

Navigation