Skip to main content
Log in

Comparison of parametric sparse recovery methods for ISAR image formation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A parametric sparse representation model of the inverse synthetic aperture radar (ISAR) signal has been proposed recently, and the ISAR signal is decomposed as a summation of many basis-signals determined by the target rotation rate. Based on the parametric sparse representation model, several sparsity-driven algorithms are proposed to retrieve both the target rotation rate and the ISAR image. In this paper, four parametric sparse recovery algorithms are compared mainly in three aspects: the accuracy of the rotation rate estimation, the ISAR image quality and the computational load. Numerical examples are presented to show the advantages and disadvantages for each method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J, Kasilingam D. Global range alignment for ISAR. IEEE Trans Aerosp Electron Syst, 2003, 39: 351–357

    Article  Google Scholar 

  2. Lieu Z S, Wu R, Li J. Complex ISAR imaging of maneuvering targets via the Capon estimator. IEEE Trans Signal Process, 1999, 47: 1262–1271

    Article  Google Scholar 

  3. Lazarov A D. Iterative MMSE method and recurrent Kalman procedure for ISAR image reconstruction. IEEE Trans Aerosp Electron Syst, 2001, 37: 1432–1441

    Article  Google Scholar 

  4. Pdendaal J W, Barnard E, Pistorius C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans Antennas Propagat, 1994, 42: 1386–1391

    Article  Google Scholar 

  5. Wang G, Xia X G, Chen V C. Adaptive filtering approach to chirp estimation and inverse synthetic aperture radar imaging of maneuvering targets. Opt Eng, 2003, 42: 190–199

    Article  Google Scholar 

  6. Donoho D L. Compressed Sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    Article  MathSciNet  Google Scholar 

  7. Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

    Article  MATH  Google Scholar 

  8. Candès E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory, 2006, 52: 5406–5425

    Article  Google Scholar 

  9. Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceedings of IEEE Radar Conference, Boston, 2007. 128–133

    Google Scholar 

  10. Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

    Article  MathSciNet  Google Scholar 

  11. Gao L, Su S, Chen Z. Orthogonal sparse representation for chirp echoes in broadband radar and its application to compressed sensing. J Electron Inf Technol, 2011, 33: 2720–2726

    Article  Google Scholar 

  12. Liu J H, Xu S K, Gao X Z, et al. A review of radar imaging techniques based on compressed sensing (in Chinese). Signal Process, 2011, 27: 251–260

    Google Scholar 

  13. Xie X, Zhang Y. 2D radar imaging scheme based on compressive sensing technique. J Electron Inf Technol, 2011, 32: 1234–1238

    Google Scholar 

  14. Cheng P, Si X C, Jiang Y C, et al. Sparse singal representaion of ISAR imaging method based on sparse Bayesian learning. Acta Electron Sin, 2008, 33: 547–550

    Google Scholar 

  15. Quan Y H, Zhang L, Guo R, et al. Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing. Sci China Inf Sci, 2011, 54: 2158–2169

    Article  MathSciNet  Google Scholar 

  16. Ender J H. On compressive sensing applied to radar. Signal Process, 2010, 90: 1402–1414

    Article  MATH  Google Scholar 

  17. Peyré G. Best basis compressed sensing. IEEE Trans Signal Process, 2010, 58: 2613–2622

    Article  MathSciNet  Google Scholar 

  18. Li G, Zhang H, Wang X, et al. ISAR 2-D imaging of uniformly rotating targets via matching pursuit. IEEE Trans Aerosp Electron Syst, 2012, 48: 1838–1846

    Article  Google Scholar 

  19. Li G, Rao W, Wang X, et al. ISAR image formation using sequential L 0 and L 2 Minimization. http://arxiv.org/abs/1202.5110

  20. Rao W, Li G, Wang X, et al. ISAR imaging of uniformly rotating targets via parametric matching pursuit. In: Proceedings of IEEE Conference on Geoscience and Remote Sensing Symposium, Vancouver, 2011. 1682–1685

    Google Scholar 

  21. Rao W, Li G, Wang X, et al. Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets. IEEE J Sel Top Appl Earth Observation Remote Sens, 2013, 6: 942–952

    Article  Google Scholar 

  22. Munoz-Ferreras J M, Perez-Martinez F. Uniform rotational motion compensation for inverse synthetic aperture radar with non-cooperative targets. IET Radar Sonar Navig, 2008, 2: 25–34

    Article  Google Scholar 

  23. Ausherman D A, Kozma A, Walker J L, et al. Developments in radar imaging. IEEE Trans Aerosp Electron Syst, 1984, 20: 363–400

    Article  Google Scholar 

  24. Troop J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655–4666

    Article  Google Scholar 

  25. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found Comput Math, 2009, 9: 317–334

    Article  MATH  MathSciNet  Google Scholar 

  26. Golub G, Pereyra V. The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM J Numer Anal, 1973, 10: 413–432

    Article  MATH  MathSciNet  Google Scholar 

  27. Cand`es E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl, 2008, 14: 877–905

    Article  MathSciNet  Google Scholar 

  28. Khajehnejad M A, Xu W, Avestimehr A S, et al. Analyzing weighted L1 minimization for sparse recovery with nonuniform sparse models. IEEE Trans Signal Process, 2011, 59: 1985–2001

    Article  MathSciNet  Google Scholar 

  29. Zheng C, Li G, Zhang H, et al. An approach of regularization parameter estimation for sparse signal recovery. In: Proceedings of the International Conference on Signal Processing, Beijing, 2010. 385–388

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, W., Li, G., Wang, X. et al. Comparison of parametric sparse recovery methods for ISAR image formation. Sci. China Inf. Sci. 57, 1–12 (2014). https://doi.org/10.1007/s11432-013-4859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4859-9

Keywords

Navigation