Skip to main content
Log in

Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput (MIMO) nonlinear systems in the presence of system uncertainties, unknown non-symmetric input saturation and external disturbances. Fuzzy logic systems (FLS) are used to approximate the system uncertainty of MIMO nonlinear systems. Then, the compound disturbance containing the approximation error and the time-varying external disturbance that cannot be directly measured are estimated via a disturbance observer. By appropriately choosing the gain matrix, the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set. This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications, in particular unknown non-symmetric input saturation and control singularity. Within this setting, the disturbance observer technique is combined with the FLS approximation technique to compensate for the effects of unknown input saturation and control singularity. Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques. Numerical simulation results are presented to illustrate the effectiveness of the proposed tracking control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li T S, Wang D, Chen N X. Adaptive fuzzy control of uncertain MIMO nonlinear systems in block-triangular forms. Nonlinear Dynam, 2011, 63: 105–123

    Article  MATH  MathSciNet  Google Scholar 

  2. Li T S, Feng G, Wang D, et al. Neural-network-based simple adaptive control of uncertain MIMO nonlinear systems. IET Contr Theor Appl, 2010, 4: 1543–1557

    Article  MathSciNet  Google Scholar 

  3. Cui R, Yan W, Xu D. Synchronization of multiple autonomous underwater vehicles without velocity measurements. Sci China Inf Sci, 2012, 55, doi: 10.1007/s11432-012-4579-6

    Google Scholar 

  4. Cui R, Ren B, Ge S S. Synchronised tracking control of multi-agent system with highorder dynamics. IET Contr Theor Appl, 2012, 6: 603–614

    Article  MathSciNet  Google Scholar 

  5. Liu Y J, Wang W. Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inform Sciences, 2007, 177: 3901–3917

    Article  MATH  Google Scholar 

  6. Li T S, Wang D, Chen N X. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cy B, 2011, 40: 915–927

    Google Scholar 

  7. Chen W S, Jiao L C. Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Trans Neural Networ, 2011, 21: 345–351

    Article  MathSciNet  Google Scholar 

  8. Liu Y J, Tong S C, Wang D, et al. Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans Neural Networ, 2011, 22: 1328–1334

    Article  Google Scholar 

  9. Liu Y J, Chen C L P, Wen G X, et al. Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans Neural Networ, 2011, 22: 1162–1167

    Article  Google Scholar 

  10. Rigatos G, Tzafestas S. Adaptive fuzzy control for the ship steering problem. Mechatronics, 2006, 16: 479–489

    Article  Google Scholar 

  11. Tong S C, Li H X. Fuzzy adaptive sliding-mode control for MIMO nonlinear Systems. IEEE Trans Fuzzy Syst, 2003, 11: 354–360

    Article  Google Scholar 

  12. Yang Y S, Ren J S. Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans Fuzzy Syst, 2003, 11: 783–795

    Article  Google Scholar 

  13. Park J H, Kim S H. Direct adaptive output-feedback fuzzy controller for a nonaffine nonlinear system. IEE P-Contr Theor Ap, 2004, 151: 65–72

    Article  Google Scholar 

  14. Wang W J, Lin H R. Fuzzy control design for the trajectory tracking on uncertain nonlinear systems. IEEE Trans Fuzzy Syst, 1999, 7: 53–62

    Article  Google Scholar 

  15. Chang Y C. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches. IEEE Trans Fuzzy Syst, 2001, 9: 278–292

    Article  Google Scholar 

  16. Liu Y J, Wang W, Tong S C, et al. Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cy A, 2010, 40: 170–184

    Article  Google Scholar 

  17. Sun Z G, Cheung N C, Zhao S W, et al. The application of disturbance observer-based sliding mode control for magnetic levitation systems. P I Mech Eng C-J Mec, 2010, 224: 1635–1644

    Article  Google Scholar 

  18. Kim E. A discrete-time fuzzy disturbance observer and its application to control. IEEE Trans Fuzzy Syst, 2003, 11: 399–410

    Article  Google Scholar 

  19. Chen W H, Ballance D J, Gawthrop P J, et al. Nonlinear PID predictive controller. IEE P-Contr Theor Ap, 1999, 146: 603–611

    Article  Google Scholar 

  20. Chen W H. Disturbance observer based control for nonlinear systems. IEEE Trans Mech, 2004, 9: 706–710

    Article  Google Scholar 

  21. Chen X K, Su C Y, Fukuda T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems. IEEE Trans Contr Syst T, 2004, 12: 569–577

    Article  Google Scholar 

  22. Chen W H, Ballance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron, 2000, 47: 932–938

    Article  Google Scholar 

  23. Wei X J, Zhang H F, Guo L. Composite disturbance-observer-based control and terminal sliding mode control for uncertain structural systems. Int J Syst Sci, 2009, 40: 1009–1017

    Article  MATH  MathSciNet  Google Scholar 

  24. Wei X J, Guo L. Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. Int J Control, 2009, 82: 1082–1098

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen W H. Nonlinear disturbance observer-enhanced dynamical inversion control of missiles. J Guid Control Dynam, 2003, 26: 161–166

    Article  Google Scholar 

  26. Guo L, Chen W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int J Robust Nonlin, 2005, 15: 109–125

    Article  MATH  Google Scholar 

  27. Wei X J, Guo L. Composite disturbance-observer-based control and H∞ control for complex continuous models. Int J Robust Nonlin, 2009, 20: 106–118

    Article  MathSciNet  Google Scholar 

  28. Chen M, Jiang C S, Jiang B, et al. Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos Soliton Fract, 2009, 39: 1856–1863

    Article  MATH  Google Scholar 

  29. Chen M, Chen WH. Sliding mode controller design for a class of uncertain nonlinear system based disturbance observer. Int J Adapt Control, 2010, 24: 51–64

    MATH  Google Scholar 

  30. Chen M, Chen W H. Disturbance observer based robust control for time delay uncertain systems. Int J Contr Automat Syst, 2010, 8: 445–453

    Article  Google Scholar 

  31. Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input saturation. Automatica, 2011, 47: 452–465

    Article  MATH  MathSciNet  Google Scholar 

  32. Chen M, Ge S S, How B. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Networ, 2010, 21: 796–812

    Article  Google Scholar 

  33. Chen M, Ge S S, Choo Y S. Neural network tracking control of ocean surface vessels with input saturation. In: Proceedings of the IEEE International Conference on Automation and Logistics. Shenyang, 2009. 85–89

    Google Scholar 

  34. Azinheira J R, Moutinho A. Hover control of an UAV with backstepping design including input saturations. IEEE Trans Contr Syst T, 2008, 16: 517–526

    Article  Google Scholar 

  35. Cao Y Y, Lin Z L. Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans Fuzzy Syst, 2003, 11: 57–67

    Article  Google Scholar 

  36. Zhong Y S. Globally stable adaptive system design for minimum phase SISO plants with input saturation. Automatica, 2005, 41: 1539–1547

    Article  MATH  Google Scholar 

  37. Hu Q L, Ma G F, Xie L H. Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica, 2008, 44: 552–559

    Article  MATH  MathSciNet  Google Scholar 

  38. Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Networ, 2004, 15: 674–692

    Article  Google Scholar 

  39. Kwan C, Lewis F L. Robust backstepping control of nonlinear systems using neural networks. IEEE Trans Syst Man Cy A, 2000, 30: 753–766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Chen, W. & Wu, Q. Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Sci. China Inf. Sci. 57, 1–13 (2014). https://doi.org/10.1007/s11432-012-4695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4695-3

Keywords

Navigation