Science China Information Sciences

, Volume 56, Issue 11, pp 1–11 | Cite as

Coherence-enhancing line drawing for color images

  • ShanDong Wang
  • ZiYang Ma
  • XueHui Liu
  • YanYun Chen
  • EnHua Wu
Research Paper Progress of Projects Supported by NSFC


Line drawing plays an important role in many image-based non-photorealistic applications. However, most existing approaches use a grayscale edge detector for line extraction, so that only luminance differences between nearby image pixels is taken into account, but the chrominance differences is ignored. This leads to the undesirable consequence that visually significant edges in adjacent regions with different colors of similar luminance cannot be detected. To address this limitation, we present a novel enhanced line drawing method based on a flow-based difference-of-Gaussians (FDoG) filter. Because of an inherent property of the thresholded DoG edge model, captured lines may appear dislodged from the true edges in the image. To this end, we provide a gradient-guided warping technique so that smooth and coherent lines can be extracted in the correct location. The GPU implementation of the proposed algorithms allows real-time performance, and experimental examples with various color images demonstrate the method’s superior qualitative performance over previous approaches.


non-photorealistic rendering line drawing FDoG filter coherence-enhancing real-time computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Son M, Kang H, Lee Y, et al. Abstract line drawings from 2D Images. In: Marc A, Steven J G, Tao J, eds. Proceedings of the Pacific Conference on Computer Graphics and Applications. Maui, 2007. 333–342Google Scholar
  2. 2.
    Pellegrino F A, Vanzella W, Torre V. Edge detection revisited. IEEE Trans Syst Man Cybern B Cybern, 2004, 34: 1500–1518CrossRefGoogle Scholar
  3. 3.
    Kang H, Lee S, Chui C K. Coherent line drawing. In: Gooch B, Agrawala M, Deussen O, eds. Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR’ 07), San Diego, 2007. 43–50Google Scholar
  4. 4.
    Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8: 679–698CrossRefGoogle Scholar
  5. 5.
    Meer P, Georgescu B. Edge detection with embedded confidence. IEEE Trans Pattern Anal Mach Intell, 2001, 23: 1351–1365CrossRefGoogle Scholar
  6. 6.
    DeCarlo D, Santella A. Stylization and abstraction of photographs. ACM Trans Graph, 2002, 21: 769–776CrossRefGoogle Scholar
  7. 7.
    Fischer J, Bartz D, Strafer W. Stylized augmented reality for improved immersion. In: Bernd F, Simon J, Haruo T, eds. Proceedings of IEEE Virtual Reality (VR’ 05), Bonn, 2005. 195–202Google Scholar
  8. 8.
    Kang H W, Chui C K, Chakraborty U. A unified scheme for adaptive stroke-based rendering. Vis Comput, 2006, 22: 814–824CrossRefGoogle Scholar
  9. 9.
    Orzan A, Bousseau A, Barla P, et al. Structure-preserving manipulation of photographs. In: Gooch B, Agrawala M, Deussen O, eds. Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR’ 07), San Diego, 2007. 103–110Google Scholar
  10. 10.
    Gooch B, Reinhard E, Gooch A. Human facial illustrations: Creation and psychophysical evaluation. ACM Trans Graph, 2004, 23: 27–44CrossRefGoogle Scholar
  11. 11.
    Marr D, Hildreth E. Theory of edge detection. Proc Royal Society B: Biol Sci, 1980, 207: 187–217CrossRefGoogle Scholar
  12. 12.
    Winnemöller H, Olsen S C, Gooch B. Real-time video abstraction. ACM Trans Graph, 2006, 25: 1221–1226CrossRefGoogle Scholar
  13. 13.
    Cabral B, Leedom L C. Imaging vector fields using line integral convolution. In: Whitton M C, ed. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’ 93), Anaheim, 1993. 263–270Google Scholar
  14. 14.
    Kyprianidis J E, Döllner J. Image abstraction by structure adaptive filtering. In: Lim I S, Tang W, eds. Proc. EG UK Theory and Practice of Computer Graphics, Manchester, 2008. 51–58Google Scholar
  15. 15.
    Kang H, Lee S, Chui C K. Flow-based image abstraction. IEEE Trans Vis Comput Graph, 2009, 15: 62–76CrossRefGoogle Scholar
  16. 16.
    Gooch A A, Olsen S C, Tumblin J, et al. Color2gray: salience-preserving color removal. ACM Trans Graph, 2005, 24: 634–639CrossRefGoogle Scholar
  17. 17.
    Neumann L, Čadík M, Nemcsics A. An efficient perception-based adaptive color to gray transformation. In: Fellner D, ed. Proceedings of Computational Aesthetics, Banff, 2007. 73–80Google Scholar
  18. 18.
    Kim Y, Jang C, Demouth J, et al. Robust color-to-gray via nonlinear global mapping. ACM Trans Graph, 2009, 28: 1–4Google Scholar
  19. 19.
    Smith K, Landes P E, Thollot J K, et al. Apparent greyscale: A simple and fast conversion to perceptually accurate images and video. Comput Graph Forum, 2008, 27: 193–200CrossRefGoogle Scholar
  20. 20.
    Grundland M, Dodgson N A. Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recognit, 2007, 40: 2891–2896CrossRefGoogle Scholar
  21. 21.
    Čadík M. Perceptual evaluation of color-to-grayscale image conversions. Comput Graph Forum, 2008, 27: 1745–1754CrossRefGoogle Scholar
  22. 22.
    Salinas R A, Richardson C, Abidi M A, et al. Data fusion: color edge detection and surface reconstruction through regularization. IEEE Trans Ind Electron, 1996, 43: 355–363CrossRefGoogle Scholar
  23. 23.
    Zenzo S D. A note on the gradient of a multi-image. Comput Vis Graph Image Process, 1986, 33: 116–125CrossRefMATHGoogle Scholar
  24. 24.
    Trahanias P, Venetsanopoulos A. Vector order statistics operators as color edge detectors. IEEE Trans Syst Man Cybern B Cybern, 1996, 26: 135–143CrossRefGoogle Scholar
  25. 25.
    Ruzon M A. Early vision using distributions. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2000Google Scholar
  26. 26.
    Ruzon M A, Tomasi C. Color edge detection with the compass operator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Ft. Collins, 1999. 160–166Google Scholar
  27. 27.
    Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Ahuja N, Desai U B, eds. Proceedings of the 6th International Conference on Computer Vision (ICCV’ 98), Bombay, 1998. 839–846Google Scholar
  28. 28.
    Kyprianidis J E, Kang H, Döllner J. Image and video abstraction by anisotropic kuwahara filtering. Comput Graph Forum, 2009, 28: 1955–1963CrossRefGoogle Scholar
  29. 29.
    Kyprianidis J E, Kang H. Image and video abstraction by coherence-enhancing filtering. Comput Graph Forum, 2011, 30: 593–602CrossRefGoogle Scholar
  30. 30.
    Yang G Z, Burger P, Firmin D, et al. Structure adaptive anisotropic image filtering. Image Vis Comput J, 1996, 14: 135–145CrossRefGoogle Scholar
  31. 31.
    Arad N, Gotsman C. Enhancement by image-dependent warping. IEEE Trans Image Process, 1999, 8: 1063–1074CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • ShanDong Wang
    • 1
    • 2
    • 3
  • ZiYang Ma
    • 1
    • 3
  • XueHui Liu
    • 1
  • YanYun Chen
    • 1
  • EnHua Wu
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.Department of Computer and Information ScienceUniversity of MacauMacaoChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations