Skip to main content
Log in

Integrating local and partial network view for routing on scale-free networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Traditional routing schemes, such as OSPF, optimize data plane routing efficiency by maintaining full view of the network at the control plane. However, maintaining full network view and handling frequent routing information updates are costly in large-scale complex networks, which are considered to be the root causes for the routing scalability issue. Recently, it is suggested that routing on local or partial information is plausible if slight performance degradation is acceptable. This paper proposes a routing scheme, operating on an integrated network view at each node that consists of its local neighborhood and a globally unique skeleton tree. This scheme significantly reduces storage, communication and processing costs. On scale-free networks, this benefit only comes at the cost of marginal performance degradation, which implies that it is not worthwhile to do shortest path routing based on full view of the network on scale-free networks. In contrast, the routing efficiency is severely aggravated on purely random networks, indicating the inappropriateness of this scheme and the rationality of maintaining full network view on random networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moy J. OSPF Version 2. IETF RFC2328. 1998

    Google Scholar 

  2. Krioukov D, Fall K, Claffy K. Scalability of routing: compactness and dynamics. http://www.ietf.org/proceedings/67/slides/RRG-3.pdf. 2006

    Google Scholar 

  3. Levchenko K, Voelker G M, Paturi R, et al. XL: an efficient network routing algorithm. In: Proceedings of ACM SIGCOMM 2008. New York: ACM Press, 2008. 15–26

    Chapter  Google Scholar 

  4. Kleinberg J. Navigation in a small world. Nature, 2000, 406: 845

    Article  Google Scholar 

  5. Fraignaiaud, Giakkoupis G. On the searchability of small-world networks with arbitrary underlying structure. In: Proceedings of the 42th ACM Symposium on Theory of Computing(STOC’10). New York: ACM Press, 2010. 389–398

    Chapter  Google Scholar 

  6. Dragan F F, Matamala M. Navigating in a graph by aid of its spanning tree. LNCS, 2008, 5369: 789–800

    MathSciNet  Google Scholar 

  7. Kleinberg R. Geographic routing using hyperbolic space. In: Proceedings of IEEE INFOCOM 2007. Washington D.C.: IEEE Computer Society Press, 2007. 1902–1909

    Chapter  Google Scholar 

  8. Yin C Y, Wang B H, Wang W X, et al. Efficient routing on scale-free networks based on local information. Phys Lett A, 2006, 351: 220–224

    Article  MATH  Google Scholar 

  9. Wang W X, Wang B H, Yin C Y, et al. Traffic dynamics based on local routing protocol on a scale-free network. Phys Rev E, 2006, 73: 026111

    Article  Google Scholar 

  10. Yang S J. Exploring complex networks by walking on them. Phys Rev E, 2005, 71: 16107

    Article  Google Scholar 

  11. Adamic L, Lukose R M, Puniyani A R, et al. Search in power-law networks. Phys Rev E, 2001, 64: 046135

    Article  Google Scholar 

  12. Clausen T, Jacquet P. Optimized link state routing protocol(OLSR). IETF RFC3626. 2003

    Google Scholar 

  13. Jacquet P, Viennot L. Remote-spanners: what to know beyond neighbors. In: Proceedings of IEEE International Symposium on Parallel&Distributed Processing 2009. Washington D. C.: IEEE Computer Society Press, 2009. 1–15

    Chapter  Google Scholar 

  14. Jacquet P, Minet P, Muhlethaler P, et al. Data transfer in HIPERLAN. Wireless Pers Commun, 1997, 4: 65–80

    Article  Google Scholar 

  15. Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45: 167–256

    Article  MathSciNet  MATH  Google Scholar 

  16. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. In: Proceedings of ACM SIGCOMM 1999. New York: ACM Press, 1999. 251–262

    Google Scholar 

  17. Zhang G Q, Quoitin B, Zhou S. Phase changes in the evolution of the IPv4 and IPv6 AS-level Internet topologies. Comput Commun, 2011, 34: 649–657

    Article  Google Scholar 

  18. Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

    Article  MathSciNet  Google Scholar 

  19. Zhang G Q. On cost-effective communication network designing. Europhys Lett, 2010, 89: 38003

    Article  Google Scholar 

  20. Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks. Phys Rev E, 2006, 73: 046108

    Article  Google Scholar 

  21. Zhang G Q, Wang D, Li G J. Enhancing the transmission efficiency by edge deletion in scale-free networks. Phys Rev E, 2007, 76: 017101

    Article  Google Scholar 

  22. Sreenivasan S, Cohen R, López E, et al. Structural bottlenecks for communication in networks. Phys Rev E, 2007, 75: 036105

    Article  Google Scholar 

  23. Kim D H, Noh J D, Jeong H. Scale-free trees: the skeletons of complex networks. Phys Rev E, 2004, 70: 046126

    Article  Google Scholar 

  24. Freeman L C. Centrality in social networks: conceptual clarification. Soc Netw, 1979, 1: 215–239

    Article  Google Scholar 

  25. Borgatti S P. Centrality and network flow. Soc Netw, 2005, 27: 55–71

    Article  Google Scholar 

  26. Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett, 2001, 87: 278701

    Article  Google Scholar 

  27. Goh K I, Salvi G, Kahng B, et al. Skeleton and fractal scaling in complex networks. Phys Rev Lett, 2006, 96: 018701

    Article  Google Scholar 

  28. Metcalfe R M, Boggs D R. Ethernet: distributed packet switching for local computer networks. Commun ACM, 1976, 19: 395–404

    Article  Google Scholar 

  29. Lynch N A. Distributed Algorithms. San Mateo: Morgan Kaufmann Publishers, 1997. 81–95

    Google Scholar 

  30. Bollobas B. Random Grpahs. Cambridge: Cambridge University Press, 2001. 34–59

    Book  Google Scholar 

  31. Erdös P, Rényi A. On random graphs. Publ Math Debrecen, 1959, 6: 290–297

    MathSciNet  MATH  Google Scholar 

  32. Zhou S, Mondragón R. Accurately modeling the Internet topology. Phys Rev E, 2004, 70: 066108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M., Zhang, G., Sun, Y. et al. Integrating local and partial network view for routing on scale-free networks. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-012-4655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4655-y

Keywords

Navigation