Skip to main content
Log in

On finite-time stability and stabilization of nonlinear port-controlled Hamiltonian systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The finite-time stability and stabilization of nonlinear port-controlled Hamiltonian (PCH) systems are investigated in this paper, and a number of new results are proposed. Firstly, by exploiting the Hamiltonian structural properties, a proper form of the Hamiltonian function is obtained, based on which a finite-time stability criterion is then presented for a class of Hamiltonian systems. Secondly, using the obtained stability criterion and the so-called “energy shaping plus damping injection” technique, the continuous finite-time stabilization problem is studied for the PCH system, and several global stabilization results are provided. Finally, the continuous robust finite-time stabilization of the PCH system with external disturbances is investigated, and two results on designing global robust finite-time stabilizers are obtained. Study of several examples with numerical simulations shows that the control design approach developed in this paper works very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maschke B M, van der Schaft A J. Port-controlled Hamiltonian systems: modeling origins and system theoretic properties. In: Proceedings of the IFAC Symposium on NOLCOS, Bordeaux, 1992. 282–288

    Google Scholar 

  2. van der Schaft A J, Maschke B M. The Hamiltonian formulation of energy conserving physical systems with external ports. Archive füur Elektronik und Übertragungstechnik, 1995, 49: 362–371

    Google Scholar 

  3. Escobar G, van der Schaft A J, Ortega R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica, 1999, 35: 445–452

    Article  MATH  Google Scholar 

  4. Ortega R, Spong M, Gomez-Estern F, et al. Stabilization of underactuated mechanical systems via inter-connection and damping assignment. IEEE Trans Autom Control, 2002, 47: 1218–1233

    Article  MathSciNet  Google Scholar 

  5. Wang Y, Feng G, Cheng D, et al. Adaptive L2 disturbance attenuation control of multimachine power systems with SMES units. Automatica, 2006, 42: 1121–1132

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng D, Astolfi A, Ortega R. On feedback equivalence to port controlled Hamiltonian systems. Syst Control Lett, 2005, 54: 911–917

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalsmo M, van der Schaft A J. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J Control Optim, 1999, 37: 54–91

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujimoto K, Sakurama K, Sugie T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica, 2003, 39: 2059–2069

    Article  MathSciNet  MATH  Google Scholar 

  9. Maschke B M, Ortega R, van der Schaft A J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Control, 2000, 45: 1498–1502

    Article  MATH  Google Scholar 

  10. Ortega R, van der Schaft A J, Maschke B, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38: 585–596

    Article  MATH  Google Scholar 

  11. van der Schaft A J. L2-gain and Passivity Techniques in Nonlinear Control. Berlin: Springer, 1999

    Google Scholar 

  12. Wang Y, Feng G, Cheng D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica, 2007, 43: 403–415

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen T, Ortega R, Lu Q, et al. Adaptive L2 disturbance attenuation of Hamiltonian systems with parameter perturbations and application to power systems. Asian J Control, 2003, 5: 143–152

    Article  Google Scholar 

  14. Sun Y, Song Y, Li X. Novel energy-based Lyapunov function for controlled power systems. IEEE Power Eng Rev, 2000, 2: 55–57

    Article  Google Scholar 

  15. Xi Z, Cheng D, Lu Q, et al. Nonlinear decentralized controller design for multi-machine power systems using Hamiltonian function method. Automatica, 2002, 38: 527–534

    Article  MATH  Google Scholar 

  16. Viola G, Ortega R, Banavar R, et al. Total energy shaping control of mechanical systems: Simplifying the matching equations via coordinate changes. IEEE Trans Autom Control, 2007, 52: 1093–1099

    Article  MathSciNet  Google Scholar 

  17. Zaborszky J, Subramanian A K, Tarn T J, et al. A new state space for emergency control in the interconnected power systems. IEEE Trans Autom Control, 1977, 22: 505–516

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong Y. Finite-time stabilization and stabilizability of a class of controllable systems. Syst Control Lett, 2002, 46: 231–236

    Article  MATH  Google Scholar 

  19. Hong Y, Huang J, Xu Y. On an output feedback finite-time stabilization problem. IEEE Trans Autom Control, 2001, 46: 305–309

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans Autom Control, 1998, 43: 678–682

    Article  MathSciNet  MATH  Google Scholar 

  21. Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM J Control Optim, 2000, 38: 751–766

    Article  MathSciNet  MATH  Google Scholar 

  22. Haimo V T. Finite-time controllers. SIAM J Control Optim, 1986, 24: 760–770

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong Y, Wang J, Cheng D. Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans Autom Control, 2006, 51: 858–862

    Article  MathSciNet  Google Scholar 

  24. Huang X, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica, 2005, 41: 881–888

    Article  MathSciNet  MATH  Google Scholar 

  25. Li J, Qian C. Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans Autom Control, 2006, 51: 879–884

    Article  MathSciNet  Google Scholar 

  26. Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems. SIAM J Control Optim, 2005, 43: 1253–1271

    Article  MATH  Google Scholar 

  27. Cheng D, Martin C. Stabilization of nonlinear systems via designed center manifold. IEEE Trans Autom Control, 2001, 46: 1372–1383

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett, 1992, 19: 467–473

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Y, Li C, Cheng D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39: 1437–1443

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuZhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Feng, G. On finite-time stability and stabilization of nonlinear port-controlled Hamiltonian systems. Sci. China Inf. Sci. 56, 1–14 (2013). https://doi.org/10.1007/s11432-012-4600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4600-0

Keywords

Navigation