Science China Information Sciences

, Volume 55, Issue 7, pp 1639–1649

Efficient construction of provably secure steganography under ordinary covert channels

  • Yan Zhu
  • MengYang Yu
  • HongXin Hu
  • Gail-Joon Ahn
  • HongJia Zhao
Research Paper

Abstract

Steganography is the science of hiding information within seemingly harmless messages or innocent media. This paper addresses the problems of efficient construction of secure steganography in ordinary covert channels. Without relying on any sampling assumption, we provide a general construction of secure steganography under computational indistinguishability. Our results show that unpredictability of mapping function in covertext sampler is indispensable for secure stegosystem on indistinguishability against adaptive chosen hiddentext attacks. We completely prove that computationally secure steganography can be constructed on pseudorandom function and unbiased sampling function under ordinary covert channels, that is, its security is inversely proportional to the sum of errors of these two functions, as well as the legth of hiddentexts. More importantly, our research is not dependent upon pseudorandom ciphertext assumption of cryptosystem or perfect sampling assumption. Hence, our results are practically useful for construction and analysis of secure stegosystems.

Keywords

steganography cryptography indistinguishability sampler unpredictability adversary models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feamster N, Balazinska M, Wang W, et al. Thwarting Web censorship with untrusted messenger discovery. In: Dingledine R, ed. Privacy Enhancing Technologies. LNCS 2760. Berlin: Springer, 2003. 125–140CrossRefGoogle Scholar
  2. 2.
    Serjantov A, Danezis G. Towards an information theoretic metric for anonymity. In: Dingledine R, Syverson P F, eds. Privacy Enhancing Technologies. LNCS 2482. Berlin: Springer, 2002. 41–53CrossRefGoogle Scholar
  3. 3.
    Boneh D, Shaw J. Collusion-secure fingerprinting for digital data. IEEE Trans Inf Theory, 1998, 44: 1897–1905MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cachin C. An information-theoretic model for steganography. In: Aucsmith D, ed. Proceedings of the 2nd Workshop on Information Hiding (IH 1998). LNCS 1525. Portland: Springer, 1998. 306–318Google Scholar
  5. 5.
    Hopper N J, Langford J, Ahn L V. Provably secure steganography. In: Yung M, ed. Advances in Cryptology — CRYPTO 2002. LNCS 2442. Santa Barbara: Springer, 2002. 77–92Google Scholar
  6. 6.
    Hopper N J, Ahn L V, Langford J. Provably secure steganography. IEEE Trans Comput, 2009, 58: 662–676MathSciNetCrossRefGoogle Scholar
  7. 7.
    Möller B. A public-key encryption scheme with pseudo-random ciphertexts. In: Samarati P, Ryan P Y A, Gollmann D, et al, eds. Proceedings of the 9th European Symposium on Research in Computer Security, ESORICS 2004. LNCS 3193. Sophia Antipolis: Springer, 2004. 335–351Google Scholar
  8. 8.
    Dedic N, Itkis G, Reyzin L, et al. Upper and lower bounds on black-box steganography. In: Backes M, Cachin C, eds. Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005. LNCS 3378. Cambridge: Springer, 2005. 227–244Google Scholar
  9. 9.
    Ahn L V, Hopper N J. Public-key steganography. In: Cachin C, Camenisch J, eds. Advances in Cryptology — EUROCRYPT 2004. LNCS 3027. Interlaken: Springer, 2004. 323–341CrossRefGoogle Scholar
  10. 10.
    Backes M, Cachin C. Public-key steganography with active attacks. In: Kilian J, ed. Theory of Cryptography, Second Theory of Cryptography Conference (TCC 2005). LNCS 3378. Cambridge: Springer, 2005. 210–226Google Scholar
  11. 11.
    Hopper N J. On steganographic chosen covertext security. In: Caires L, Italiano G F, Monteiro L, et al, eds. Proceedings of the 32nd International Colloquium on Automata Languages and Programming (ICALP 2005). LNCS 3580. Lisbon: Springer, 2005. 311–323CrossRefGoogle Scholar
  12. 12.
    Lysyanskaya A, Meyerovich M. Provably secure steganography with imperfect sampling. In: Yung M, Dodis Y, Kiayias A, et al, eds. Proceedings of the 9th International Conference on Theory and Practice of Public-Key Cryptography (PKC 2006). LNCS 3958. New York: Springer, 2006. 123–139Google Scholar
  13. 13.
    Goldwasser S, Bellare M. Lecture Notes on Cryptography. 2008. http://www-cse.ucsd.edu/mihir/papers/gb.html
  14. 14.
    Yao A C. Theory and application of trapdoor functions. In: Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science (FOCS 1982). Chicago: IEEE Computer Society, 1982. 80–91Google Scholar
  15. 15.
    Goldreich O. Foundations of cryptography volume I, Basic tools. London: Cambridge University Press, 2001CrossRefGoogle Scholar
  16. 16.
    Luo X Y, Liu F L, Yang C F, et al. Image universal steganalysis based on best wavelet packet decomposition. Sci China Inf Sci, 2010, 53: 634–647MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Zhu
    • 1
    • 2
  • MengYang Yu
    • 3
  • HongXin Hu
    • 4
  • Gail-Joon Ahn
    • 4
  • HongJia Zhao
    • 1
    • 2
  1. 1.Beijing Key Laboratory of Internet Security TechnologyPeking UniversityBeijingChina
  2. 2.Institute of Computer Science and TechnologyPeking UniversityBeijingChina
  3. 3.School of Mathematical SciencesPeking UniversityBeijingChina
  4. 4.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations