Science China Information Sciences

, Volume 56, Issue 3, pp 1–11 | Cite as

Construction of punctured and extended quantum codes over GF(2)

Research Paper
  • 133 Downloads

Abstract

On the basis of elementary transformation, we propose a new method for constructing a class of pure quantum codes [[ni, 2kn + i, d − i]]2 and [[n + 1, 2kn − 1, d + 1]]2 from a class of classical linear codes [n, k, d]2 that contain their dual codes. The construction process was based on the elementary algebra; the error-correcting performance of the quantum codes was analyzed according to the relationship between the parity-check matrix and the minimum distance of the classical linear codes; the encoding and decoding networks were constructed based on the stabilizer. The proposed method is simple, straightforward and easy to implement using a computer and other hardware system. The theoretical results showed that the method is practical for the construction of a class of quantum codes.

Keywords

Calderbank-Shor-Steane code punctured code extended code Hamming code check matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rains E M. Nonbinary quantum codes. IEEE Trans Inform Theory, 1999, 45: 1827–1832MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Feng K Q. Quantum codes [[6, 2, 3]]p, [[7, 3, 3]]] p (p ⩾ 3) exist. IEEE Trans Inform Theory, 2002, 48: 2384–2391MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ashikhmin A, Knill E. Nonbinary quantum stabilizer codes. IEEE Trnas Inform Theory, 2001, 47: 3065–3072MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Liu T L, Wen Q Y, Liu Z H. Construction of nonbinary cyclic codes by using graph method. Sci China Ser E-Inf Sci, 2005, 35: 588–596Google Scholar
  5. 5.
    Sarvepalli P, Klappenecker A. Nonbinary quantum Reed-Muller codes. In: Proceedings of 2005 IEEE International Symposium on Information Theory. Adelaide, 2005. 1023–1027Google Scholar
  6. 6.
    Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inform Theory, 1998, 44: 1369–1387MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over finite fields. IEEE Trans Inform Theory, 2006, 52: 4892–4919MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kim J L, Walker J. Nonbinary quantum error-correcting codes from algebraic curves. Discrete Math, 2008, 308: 3115–3124MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Aoki T, Takahashi G, Kajiya T, et al. Quantum error correction beyond qubits. Nat Phys, 2009, 5: 541–546CrossRefGoogle Scholar
  10. 10.
    Poulin D, Tillich J P. Quantum serial turbo codes. IEEE Trans Inform Theory, 2009, 55: 2776–1798MathSciNetCrossRefGoogle Scholar
  11. 11.
    Forney G D, Grassl M, Guha S. Convolutional and tail-biting quantum error-correcting codes. IEEE Trans Inform Theory, 2007, 53: 865–880MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Yu S X, Chen Q, Lai C H, et al. Nonadditive quantum error-correcting code. Phys Rev Lett, 2008, 101: 090501MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lin X. Quantum cyclic and constacyclic codes. IEEE Trans Inform Theory, 2004, 50: 547–549MathSciNetCrossRefGoogle Scholar
  14. 14.
    Steane A M. Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans Inform Theory, 1999, 45: 2492–2495MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wang E F, Shi S M. Advanced Algebra(in Chinese). 3rd ed. Beijing: Higher Education Press, 2003. 23–35Google Scholar
  16. 16.
    Chen L S, Shen S Y. Basic Theory of Coding(in Chinese). Beijing: Higher Education Press, 2005. 106–124Google Scholar
  17. 17.
    Xiao F Y. Quantum Channel Coding Based on the Stabilizer. Dissertation for the Doctoral Degree. Nanjing: Southeast University, 2010. 53–82Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • FangYing Xiao
    • 1
  • HanWu Chen
    • 1
  • MeiJu Xing
    • 1
  • ZhiHao Liu
    • 1
  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations