Skip to main content
Log in

A particle-based method for granular flow simulation

  • Research Paper
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke’s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard P, Nicodemi M, Delannay R, et al. Slow relaxation and compaction of granular systems. Nat Mat, 2005, 4: 121–128

    Article  Google Scholar 

  2. Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Diego: Eurographics Association, 2003. 154–159

    Google Scholar 

  3. Müller M, Solenthaler B, Keiser R, et al. Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 237–244

    Chapter  Google Scholar 

  4. Müller M, Schirm S, Teschner M, et al. Interaction of fluids with deformable solids. Comp Anim Virt Worlds, 2004, 15: 159–171

    Article  Google Scholar 

  5. Chang Y Z, Bao K, Liu Y Q, et al. A particle-based method for viscoelastic fluids animation. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2009. 111–117

    Chapter  Google Scholar 

  6. Clavet S, Beaudoin P, Poulin P. Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 219–228

    Chapter  Google Scholar 

  7. Gerszewski D, Bhattacharya H, Bargteil A. A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2009. 133–138

    Chapter  Google Scholar 

  8. Müller M, Keiser R, Nealen A, et al. Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2004. 141–151

    Chapter  Google Scholar 

  9. Gao Y, Li C F, Hu S M, et al. Simulating gaseous fluids with low and high speeds. Comput Graph Forum, 2009, 28: 1845–1852

    Article  Google Scholar 

  10. Oh S, Kim Y, Roh B-S. Impulse-based rigid body interaction in SPH. Comp Anim Virt Worlds, 2009, 20: 215–224

    Article  Google Scholar 

  11. Becker M, Ihmsen M, Teschner M. Corotated SPH for deformable solids. In: Proceedings of Eurographics Workshop on Natural Phenomena. Munich: Eurographics Association, 2009. 27–34

    Google Scholar 

  12. Keiser R, Adams B, Gasser D, et al. A unified lagrangian approach to solid-fluid animation. In: Proceedings of the Symposium on Point-Based Graphics. Los Alamitos: IEEE Computer Society, 2005. 125–148

    Chapter  Google Scholar 

  13. Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid-solid interactions. Comp Anim Virt Worlds, 2007, 18: 69–82

    Article  Google Scholar 

  14. Lenaerts T, Adams B, Dutré P. Porous flow in particle-based fluid simulations. In: ACM SIGGRAPH 2008. New York: ACM, 2008. 49:1–49:8

    Chapter  Google Scholar 

  15. Lenaerts T, Dutré P. Mixing fluids and granular materials. Comput Graph Forum, 2009, 28: 213–218

    Article  Google Scholar 

  16. Rungjiratananon W, Szego Z, Kanamori Y, et al. Real-time animation of sand-water interaction. Comput Graph Forum, 2008, 27:1887–1893

    Article  Google Scholar 

  17. Hong J M, Lee H Y, Yoon J C, et al. Bubbles alive. In: ACM SIGGRAPH 2008. New York: ACM, 2008. 48:1–48:4

    Google Scholar 

  18. Iwasaki K, Uchida H, Dobashi Y, et al. Fast particle-based visual simulation of ice melting. Comput Graph Forum, 2010, 29: 2215–2223

    Article  Google Scholar 

  19. Sumner R W, O’Brien J F, Hodgins J K, et al. Animating sand, mud, and snow. Comput Graph Forum, 1999, 18: 17–26

    Article  Google Scholar 

  20. Onoue K, Nishita T. Virtual sandbox. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2003. 252

    Chapter  Google Scholar 

  21. Bell N, Yu Y Z, Mucha P J. Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM, 2005. 77–86

    Chapter  Google Scholar 

  22. Narain R, Golas A, Lin M C. Free-flowing granular materials with two-way solid coupling. In: ACM SIGGRAPH Asia 2010 papers. New York: ACM, 2010. 173:1–173:10

    Chapter  Google Scholar 

  23. Alduán I, Tena A, Otaduy M A. Simulation of high-resolution granular media. In: Proceedings of Congreso Español de Informática Gráfica. San Sebastián: Eurographics Association, 2009

  24. Pla-Castells M, García-Fernández I, Martinez-Dura R J. Physically-based interactive sand simulation. In: Eurographics 2008. Crete: Eurographics Association, 2008. 21–24

    Google Scholar 

  25. Zhu B, Yang X B. Animating sand as a surface flow. In: Eurographics 2010. Norrkoping: Eurographics Association, 2010

    Google Scholar 

  26. Zhu Y N, Bridson R. Animating sand as a fluid. In: ACM SIGGRAPH 2005. New York: ACM, 2005. 965–972

    Chapter  Google Scholar 

  27. Stellingwerf R F, Wingate C A. Impact modeling with smooth particle hydrodynamics. Int J Impact Eng, 1993, 14: 707–718

    Article  Google Scholar 

  28. Benz W, Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Comm, 1995, 87: 253–265

    Article  MATH  Google Scholar 

  29. Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics. Comput Meth Appl Mech Eng, 2001, 190: 6641–6662

    Article  MATH  Google Scholar 

  30. Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Tech, 2006, 177: 41–48

    Article  Google Scholar 

  31. Cleary P W, Das R. The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. Cape Town: Springer, 2008. 287–296

    Chapter  Google Scholar 

  32. Cleary P W. Elastoplastic deformation during projectile-wall collision. Appl Math Model, 2010, 34: 266–283

    Article  MathSciNet  MATH  Google Scholar 

  33. Desbrun M, Cani M-P. Smoothed particles: A new paradigm for animating highly deformable bodies. In: Eurographics Workshop on Computer Animation and Simulation. Poitiers: Springer-Verlag, 1996. 61–76

    Google Scholar 

  34. Adams B, Pauly M, Keiser R, et al. Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007. New York: ACM, 2007. 48:1–48:8

    Google Scholar 

  35. Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM J Res Dev, 1967, 11: 215–234

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanZhang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Bao, K., Zhu, J. et al. A particle-based method for granular flow simulation. Sci. China Inf. Sci. 55, 1062–1072 (2012). https://doi.org/10.1007/s11432-012-4564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4564-0

Keywords

Navigation