Skip to main content
Log in

Survey of DHT topology construction techniques in virtual computing environments

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The Internet-based virtual computing environment (iVCE) is a novel network computing platform. The characteristics of growth, autonomy, and diversity of Internet resources present great challenges to resource sharing in iVCE. The DHT overlay (DHT for short) technique has various advantages such as high scalability, low latency, and desirable availability, and is thus an important approach to realizing efficient resource sharing. Topology construction is a key technique for structured overlays that realizes basic overlay functions including dynamic maintenance and message routing. In this paper, we first introduce the traditional techniques of DHT topology construction, focusing mainly on dynamic maintenance and message routing of typical DHTs, DHT indexing techniques for complex queries, and DHT grouping techniques for matching domain structures. We then present recent advances in DHT topology construction techniques in iVCE taking advantage of the characteristics of Internet resources. Finally, we discuss the future of DHT topology construction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X C, Wang H M, Wang J. Internet-based virtual computing environment (iVCE): concepts and architecture. Sci China Ser F-Inf, 2006, 49: 681–701

    Article  Google Scholar 

  2. Hoffman D, Novak T, Venkatesh A. Has the Internet become indispensable? Commun ACM, 2004, 47: 37–42

    Article  Google Scholar 

  3. Schoder D, Fischbach K. Peer-to-peer prospects. Commun ACM, 2003, 46: 27–29

    Article  Google Scholar 

  4. Taylor I J. From P2P to Web Services and Grids. London: Springer-Verlag, 2005. 20–23

    MATH  Google Scholar 

  5. Balakrishnan H, Kaashoek M F, Karger D, et al. Looking up data in P2P systems. Commun ACM, 2003, 46: 43–48

    Article  Google Scholar 

  6. Castro M, Costa M, Rowstron A. Debunking some myths about structured and unstructured overlays. In: Proceedings of the 2nd NSDI. Boston: USENIX Press, 2005. 85–98

    Google Scholar 

  7. Daswani N, Molina H G, Yang B. Open problems in data-sharing peer-to-peer systems. ICDT 2003.

  8. Theotokis S A, Spinellis D. Survey of peer-to-peer content distribution technologies. ACM Comput Surv, 2004, 36: 335–371

    Article  Google Scholar 

  9. Li D S. Research on peer-to-peer resource location in large-scale distributed systems. PhD Thesis. Changsha: National University of Defense Technology, 2005. 21–22

    Google Scholar 

  10. Stoica I, Morris R, Karger D R, et al. Chord: a scalable peer-to-peer lookup service for Internet applications. IEEE ACM Trans Netw, 2003, 11: 17–32

    Article  Google Scholar 

  11. Gupta I, Birman K, Linga P, et al. Kelips: building an efficient and stable P2P DHT through increased memory and background overhead. In: Kaashoek M F, Stoica I, eds. Proceedings of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03). Berkeley: Springer, 2003. 160–169

    Google Scholar 

  12. Li J, Stribling J, Morris R, et al. Bandwidth-efficient management of DHT routing tables. In: Proceedings of the 2nd NSDI. Boston: USENIX Press, 2005. 99–114

    Google Scholar 

  13. Ratnasamy S, Francis P, Handley M, et al. A scalable content addressable network. In: SIGCOMM 2001. San Diego: ACM Press, 2001. 161–172

    Chapter  Google Scholar 

  14. Shen H Y, Xu C Z, Chen G H. Cycloid: a scalable constant-degree p2p overlay network. Perform Evaluation, 2005, 63: 195–216

    Google Scholar 

  15. Plaxton C G, Rajaraman R, Richa A W. Accessing nearby copies of replicated objects in a distributed environment. In: Proceedings of SPAA. Newport: ACM Press, 1997. 311–320

    Chapter  Google Scholar 

  16. Zhao B Y, Huang L, Stribling J, et al. Tapestry: a resilient global-scale overlay for service deployment. IEEE J Sel Area Comm, 2004, 22: 41–53

    Article  Google Scholar 

  17. Rowstron A, Druschel P. Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems. In: Guerraoui R, ed. IFIP/ACM International Conference on Distributed Systems Platforms (Middleware). Heidelberg: Springer, 2001. 329–350

    Google Scholar 

  18. Castro M, Costa M, Rowstron A. Performance and Dependability of Structured Peer-to-Peer Overlays. Technical Report MSR-TR-2003-94, Microsoft Research. 2003

  19. Rhea S, Geels D, Roscoe T, et al. Handling churn in a DHT. In: Proceedings of USENIX Annual Technical Conference. Boston: USENIX Press, 2004. 127–140

    Google Scholar 

  20. Rhea S, Godfrey B, Karp B, et al. OpenDHT: a public DHT service and its uses. In: Guérin R, Govindan R, Minshall G, eds. Proceedings of ACM SIGCOMM. Philadelphia: ACM Press, 2005. 73–84

    Google Scholar 

  21. Maymounkov P, Mazieres D. Kademlia: a peer-to-peer information system based on the xor metric. In: Druschel P, Kaashoek M F, Rowstron A I, eds. Proceedings of International Workshop on Peer-to-Peer Systems (IPTPS’02). Cambridge: Springer, 2002. 53–65

    Google Scholar 

  22. Kumar A, Merugu S, Xu J, et al. Ulysses: a robust, low-diameter, low-latency peer-to-peer network. In: Proceedings of ICNP 2003. Atlanta: IEEE Press, 2003. 258–267

    Google Scholar 

  23. Malkhi D, Naor M, Ratajczak D. Viceroy: a scalable and dynamic emulation of the butterfly. In Proceedings of PODC. Monterey: ACM Press, 2002. 183–192

    Google Scholar 

  24. Pugh W. Skip lists: a probabilistic alternative to balanced trees. In: Dehne F, Sack J, Santoro N, eds. Workshop on Algorithms and Data Structures. Ottawa: Springer, 1989. 437–449

    Google Scholar 

  25. Harvey N J A, Jones M B, Saroiu S, et al. Skipnet: a scalable overlay network with practical locality properties. In: Proceedings of USITS 2003. Seattle: USENIX Press, 2003.

    Google Scholar 

  26. de Bruijn N G. A combinatorial problem. Koninklijke Nederlandse Akademie van Wetenschappen P, 1946, A49: 758–764

    Google Scholar 

  27. Kaashoek F, Karger D. Koorde: a simple degree-optimal distributed hash table. In: Kaashoek M F, Stoica I, eds. Proceedings of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03). Berkeley: Springer, 2003. 98–107

    Google Scholar 

  28. Fraigniaud P, Gauron P. D2B: a De Bruijn based content-addressable network. Theor Comput Sci, 2006, 355: 65–79

    Article  MathSciNet  MATH  Google Scholar 

  29. Loguinov D, Kumar A, Rai V, et al. Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience. In: Feldmann A, Zitterbart M, Crowcroft J, et al., eds. Proceedings of ACM SIGCOMM 2003. Karlsruhe: ACM Press, 2003. 395–406

    Google Scholar 

  30. Gai A T, Viennot L. Broose: a practical distributed Hash table based on the de Bruijn Topology. In: Caronni G, Weiler N, Shahmehri N, eds. Proceedings the International Conference on Peer-to-Peer Computing. Switzerland: IEEE Computer Society, 2004. 167–174

    Google Scholar 

  31. Kautz W H. The design of optimum interconnection networks for multiprocessors. In: Architecture and Design of Digital Computer. USA: Springer, 1969. 249–277

    Google Scholar 

  32. Li D S, Lu X C, Wu J. FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs. In: Proceedings of IEEE INFOCOM. Miami: IEEE Computer Society, 2005. 1677–1688

    Google Scholar 

  33. Li D S, Cao J N, Chan K, et al. Delay-bounded range queries in DHT-based peer-to-peer systems. In: Proceedings of ICDCS 2006. Lisboa: IEEE Computer Society, 2006

    Google Scholar 

  34. Gupta A, Agrawal D, Abbadi A E. Approximate range selection queries in peer-to-peer systems. In: Proceedings of the 1st Biennial Conference on Innovative Data Systems Research (CIDR). Asilomar, 2003

  35. Schmidt C, Parashar M. Enabling flexible queries with guarantees in P2P systems. IEEE Internet Comput, 2004, 8: 19–26

    Article  Google Scholar 

  36. Ganesan P, Yang B, Molina H G. One torus to rule them all: multidimensional queries in P2P systems. In: Amer-Yahia S, Gravano L, eds. Proceedings of WebDB’04. Paris: ACM Press, 2004. 19–24

    Google Scholar 

  37. Chawathe Y, Ramabhadran S, Ratnasamy S, et al. A case study in building layered DHT applications. In: Guérin R, Govindan R, Minshall G, eds. Proceedings of ACM SIGCOMM. Philadelphia: ACM Press, 2005. 97–108

    Google Scholar 

  38. Crainiceanu A, Linga P, Gehrke J, et al. PTree: a P2P index for resource discovery applications. In: Feldman S, Uretsky M, Najork M, et al., eds. Proceedings of www 2004. New York: ACM Press, 2004. 13–19

    Google Scholar 

  39. Bharambe A R, Agrawal M, Seshan S. Mercury: supporting scalable multi-attribute range queries. In: Yavatkar R, Zegura E, Rexford J, eds. Proceedings of SIGCOMM 2004. Portland: ACM Press, 2004. 353–366

    Chapter  Google Scholar 

  40. Oppenheimer D, Albrecht J, Patterson D, et al. Distributed resource discovery on planetlab with SWORD. In: Proceedings of the 1st Workshop on Real Large Distributed Systems (WORLDS’04). Santa Francisco: USENIX Press, 2004

    Google Scholar 

  41. Cai M, Frank M, Chen J, et al. MAAN: a multi-attribute addressable network for grid information services. In: Stockinger H, ed. Proceedings of the 4th International Workshop on Grid Computing (Grid’2003). Phoenix: IEEE Computer Society, 2003. 184–191

    Google Scholar 

  42. Crainiceanu A, Linga P, Machanavajjhala A, et al. P-ring: an efficient and robust P2P range index structure. In: Chan C, Beng Ooi C, Zhou A, eds. Proceedings of SIGMOD 2007. Beijing: ACM Press, 2007. 223–234

    Chapter  Google Scholar 

  43. Tang Y, Zhou S. LHT: a low-maintenance indexing scheme over DHTs. In: Proceedings of IEEE ICDCS 2008. Beijing: IEEE Computer Society, 2008. 141–151

    Google Scholar 

  44. Jagadish H V, Ooi B C, Vu Q H. Baton: a balanced tree structure for peer-to-peer networks. In: Böhm K, Jensen C, Haas L, eds. Proceedings of VLDB 2005. Trondheim: ACM Press, 2005. 661–672

    Google Scholar 

  45. Jagadish H V, Ooi B C, Tan K L, et al. Speeding up search in peer-to-peer networks with a multi-way tree structure. In: Chaudhuri S, Hristidis V, Polyzotis N, eds. Proceedings of SIGMOD 2006. Chicago: ACM Press, 2006. 1–12

    Chapter  Google Scholar 

  46. Risson J, Moors T. Survey of Research towards Robust Peer-to-Peer Networks: Search Methods. Technical Report UNSW-EE-P2P-1-1. 2004

  47. Albrecht K, Arnold R, Gahwiler M, et al. Aggregating information in peer-to-peer systems for improved join and leave. In: Caronni G, Weiler N, Shahmehri N, eds. Proceedings of P2P Computing 2004. Zurich: IEEE Computer Society, 2004. 227–234

    Google Scholar 

  48. Bhagwan R, Varghese G, Voelker G M. Cone: Augmenting DHTs to Support Distributed Resource Discovery. Technical Report. San Diego: University of California, 2003

    Google Scholar 

  49. Yalagandula P, Dahlin M. A scalable distributed information management system. In: Yavatkar R, Zegura E, Rexford J, eds. Proceedings of SIGCOMM 2004. Portland: ACM Press, 2004. 379–390

    Chapter  Google Scholar 

  50. Cao P, Wang Z. Efficient top-K query calculation in distributed networks. In: Chaudhuri S, Kutten S, eds. Proceedings of PODC 2004. Newfoundland: ACM Press, 2004. 206–215

    Google Scholar 

  51. Huebsch R, Chun B, Hellerstein J M, et al. The architecture of PIER: an internet-scale query processor. In: Proceedings of CIDR 2005. Asilomar, 2005. 28–43

  52. Zhang Y M, Li D S, Lu X C. Scalable distributed resource information service for Internet-based virtual computing environment(in Chinese). J Softw, 2007, 18: 1933–1942

    Article  Google Scholar 

  53. Wu P, Zhang C, Feng Y, et al. Parallelizing skyline queries for scalable distribution. In: Ioannidis Y, Scholl M, Schmidt J, et al., eds. Proceedings of EDBT 2006. Munich: Spinger Press, 2006. 112–130

    Google Scholar 

  54. Chen L, Cui B, Lu H, et al. iSky: efficient and progressive skyline computing in a structured P2P network. In: Proceedings of IEEE ICDCS 2008. Beijing: IEEE Computer Society, 2008. 160–167

    Google Scholar 

  55. Zhang Y M, Liu L, Li D S, et al. DHT-based range query processing for web service discovery. In: Proceedings of IEEE International Conference on Web Services 2009 (ICWS’09). Los Angeles: IEEE Computer Society, 2009. 477–484

    Chapter  Google Scholar 

  56. Jagadish H V. Linear clustering of objects with multiple attributes. In: Garcia-Molina H, Jagadish H, eds. Proceedings of ACM International Conference on Management of Data (SIGMOD 1990). Atlantic City: ACM Press, 1990. 332–342

    Chapter  Google Scholar 

  57. Yalagandula P, Dahlin M. Administrative Autonomy in Structured Overlays. Technical Report, University of Texas at Austin. 2006

  58. Ganesan P, Gummadi K, Molina H G. Canon in G major: designing DHTs with hierarchical structure. In: Proceedings of IEEE ICDCS 2004. Tokyo: IEEE Computer Society, 2004. 263–272

    Google Scholar 

  59. Karger D, Ruhl M. Diminished chord: a protocol for heterogeneous sub-group formation in peer-to-peer networks. In: Voelker G, Shenker S, eds. IEEE IPTPS 2004. 288–297

  60. Zhang Y M, Li D S, Chen L, et al. Enabling routing control in a DHT. IEEE J Sel Area Comm, 2010, 28: 28–38

    Article  Google Scholar 

  61. Ratnasamy S, Shenker S, Stoica I. Routing algorithms for DHTs: some open questions. In: Druschel P, Kaashoek M, Rowstron A, eds. Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS’02). Cambridge: Springer Press, 2002. 45–52

    Google Scholar 

  62. Xu J, Kumar A, Yu X X. On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. IEEE J Sel Area Comm, 2004, 22: 151–163

    Article  MATH  Google Scholar 

  63. Shen H Y, Xu C Z. Elastic routing table with probable performance for congestion control in DHT networks. In: Proceedings of ICDCS 2006. Lisboa: IEEE Computer Society, 2006

    Google Scholar 

  64. Zhang H Y, Liu B H, Dou W H. Design of a robust active queue management algorithm based on feedback compensation. In: Feldmann A, Zitterbart M, Crowcroft J, et al., eds. Proceedings of ACM SIGCOMM 2003. Karlsruhe: ACM Press, 2003. 277–285

    Google Scholar 

  65. Huebsch R, Garofalakis M, Hellerstein J M, et al. Sharing aggregate computation for distributed queries. In: Chan C, Beng Ooi C, Zhou A, eds. Proceedings of SIGMOD 2007. Beijing: ACM Press, 2007. 485–496

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lu, X. & Li, D. Survey of DHT topology construction techniques in virtual computing environments. Sci. China Inf. Sci. 54, 2221–2235 (2011). https://doi.org/10.1007/s11432-011-4377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4377-6

Keywords

Navigation