Skip to main content
Log in

Coupled dictionary learning method for image decomposition

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A novel variational model for image decomposition is proposed. Meanwhile a new cartoon-texture dictionary learning algorithm, which is guided by diffusion flow, is presented. Numerical experiments show that the proposed method has better performance than the existing algorithms in image decomposition and denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations. Boston: University Lecture Series, American Mathematical Society, 2001

    MATH  Google Scholar 

  2. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  3. Vese L, Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing. J Sci Computing, 2003, 19: 553–572

    Article  MathSciNet  MATH  Google Scholar 

  4. Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H-1Norm. SIAM Multiscale Model Simul, 2003, 1: 349–370

    Article  MathSciNet  MATH  Google Scholar 

  5. Yin W T, Goldfarb D, Osher S. Image Cartoon-Texture Decomposition and Feature Selection Using the Total Variation Regularized L1 Functional. Technical Report 05-47, UCLA CAM Reports. 2005

  6. Yin WT, Goldfarb D, Osher S. The total variation regularized L1 model for multiscale decomposition. SIAM Multiscale Model Simul, 2007, 6: 190–211

    Article  MathSciNet  MATH  Google Scholar 

  7. Yin W T, Goldfarb D, Osher S. A comparison of three total variation based texture extraction models. J Vis Commun Image Represent, 2007, 18: 240–252

    Article  Google Scholar 

  8. Duval V, Aujol J F, Gousseau Y. The TVL1 model: A geometric point of view. SIAM Multiscale Model Simul, 2009, 8: 154–189

    Article  MathSciNet  MATH  Google Scholar 

  9. Buades A, Le T M, Morel J M, et al. Fast cartoon + texture image filters. IEEE Trans Image Process, 2010, 19: 1978–1986

    Article  MathSciNet  Google Scholar 

  10. Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process, 2005, 14: 1570–1582

    Article  MathSciNet  Google Scholar 

  11. Jiang L L, Feng X C, Yin H Q. Variational image restoration and decomposition with curvelet shrinkage. J Math Imaging Vision, 2008, 30: 125–132

    Article  MathSciNet  Google Scholar 

  12. Li Y F, Feng X C. The split Bregman method for L1 projection problemsv (in Chinese). Acta Electron Sin, 2010, 38: 2471–2475

    Google Scholar 

  13. Li M, Feng X C. A variational model for image decomposition based on wavelet method (in Chinese). Acta Electron Sin, 2008, 36: 184–187

    Google Scholar 

  14. Zhang L, Paul B, Wu X L. Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Trans Circuits Syst Video Technol, 2005, 15: 469–481

    Article  Google Scholar 

  15. Engan K, Aase S O, Hakon H J. Method of optimal directions for frame design. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, 1999. 2443–2446

  16. Aharon M, Elad M, Bruckstein A M. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans Image Process, 2006, 54: 4311–4322

    Article  Google Scholar 

  17. Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model Simul, 2008, 7: 214–241

    Article  MathSciNet  MATH  Google Scholar 

  18. Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process, 2008, 17: 53–69

    Article  MathSciNet  Google Scholar 

  19. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process, 2006, 15: 3736–3745

    Article  MathSciNet  Google Scholar 

  20. Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 1993. 40–44

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangChu Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Feng, X. Coupled dictionary learning method for image decomposition. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-011-4365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4365-x

Keywords

Navigation