Skip to main content
Log in

Asynchronous cooperative communication systems: A survey on signal designs

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Cooperative communications is a promising technique for future high speed wireless communications. These systems may be formulated as virtual multi-input multi-output (MIMO) systems where spatial/cooperetive diversity is a key advantage. However, different from MIMO systems, one of the major challenges for cooperative communications systems is that the cooperative transmissions in cooperative systems may be neither time nor frequency synchronized, since the transmissions are from multiple cooperative nodes at different locations. The existing signal designs for co-located MIMO systems may not be able to collect the cooperative diversity in cooperative communications systems. This paper gives an overview of recent research efforts on combating the time and frequency asynchronism of the cooperative communication network. We focus on the signal designs (or space-time codings/modulations) to achieve full cooperative diversity, and summarize some of the resent distributed space-timing coding and space-frequency coding techniques to combat timing errors and frequency offsets, and in the meantime to achieve full cooperative diversity, in both one-way and two-way cooperative networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Telatar E. Capacity of multi-antenna Gaussian channels. European Trans Telecom, 1999, 10: 585–595

    Article  Google Scholar 

  2. Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun, 1998, 6: 311–335

    Article  Google Scholar 

  3. Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans Inform Theory, 1998, 44: 744–765

    Article  MathSciNet  MATH  Google Scholar 

  4. Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J Select Area Commun, 1998, 16: 1451–1458

    Article  Google Scholar 

  5. Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech J, 1996, 1: 41–59

    Article  Google Scholar 

  6. Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogoal designs. IEEE Trans Inform Theory, 1999, 45: 1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  7. Sendonaris A, Erkip E, Aazhang B. User cooperative diversity - Part I: System description, Part II: Implementation aspects and performance analysis. IEEE Trans Commun, 2003, 51: 1927–1948

    Article  Google Scholar 

  8. Laneman J N, Tse D, Wornell G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inform Theory, 2004, 50: 3062–3080

    Article  MathSciNet  Google Scholar 

  9. Laneman J, N, Wornell W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans Inform Theory, 2003, 49: 2415–2425

    Article  MathSciNet  Google Scholar 

  10. Janani M, Hedayat A, Hunter T E, et al. Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Trans Signal Process, 2004, 52: 362–371

    Article  MathSciNet  Google Scholar 

  11. Stefanov A, Erkip E. Cooperative space-time coding for wireless networks. IEEE Trans Commun, 2005, 53: 1804–1809

    Article  Google Scholar 

  12. Jing Y, Hassibi B. Distributed space-time coding in wireless relay networks. IEEE Trans Wirel Commun, 2006, 5: 3524–3536

    Article  Google Scholar 

  13. Pabst R, Walke B H, Schultz D C, et al. Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Commun Mag, 2004, 42: 80–89

    Article  Google Scholar 

  14. Scaglione A, Goeckel D L, Laneman J N. Cooperative communications in mobile ad hoc networks: Rethinking the link abstraction. IEEE Signal Process Mag, 2006, 23: 18–29

    Article  Google Scholar 

  15. Stankovic V, Host-Madsen A, Xiong Z. Cooperative diversity for wireless ad hoc networks: capacity bounds and code designs. IEEE Signal Process Mag, 2006, 23: 37–49

    Article  Google Scholar 

  16. Wei S. Diversity-multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Trans Inform Theory, 2007, 53: 4150–4172

    Article  MathSciNet  Google Scholar 

  17. Kuo W Y, Fitz M P. Frequency offset compensation of pilot symbol assisted modulation in frequency flat fading. IEEE Trans Commun, 1997, 45: 1412–1416

    Article  Google Scholar 

  18. Iltis R A, Mirzaei S, Kastner R. Carrier offset and channel estimation for cooperative MIMO sensor networks. In: Proc IEEE Globecom, San Francisco, 2006. 1–5

  19. Pham T H, Nallanathan A, Liang Y C. Joint channel and frequency offset estimation in distributed MIMO flat-fading channels. IEEE Trans Wireless Commun, 2008, 7: 648–656

    Article  Google Scholar 

  20. Parker P A, Mitran P, Bliss B W, et al, On bounds and algorithms for frequency synchronization for collaborative communication systems. IEEE Trans Signal Process, 2008, 56: 3742–3752

    Article  MathSciNet  Google Scholar 

  21. Li X, Wu Y C, Serpedin E. Timing synchronization in decode-and-forward cooperative communication systems. IEEE Trans Signal Process, 2009, 57: 1444–1455

    Article  MathSciNet  Google Scholar 

  22. Wang J Z, Milstein L B. CDMA overlay situations for microcellular mobile communications. IEEE Trans Commun, 1995, COM-43: 603–614

    Article  Google Scholar 

  23. Rankov B, Wittneben A. Achievable rate regions for the two-way relay channel. In: Proc IEEE International Symp Inform Theory (ISIT), 2006. 1668–1672

  24. Rankov B, Wittneben A. Spectral efficient protocols for halfduplex fading relay channels. IEEE J Sel Area Commun, 2007, 25: 379–389

    Article  Google Scholar 

  25. Katti S, Gollakota S, Katabi D. Embracing wireless interference: analog network coding. In: Proc ACM SIGCOMM, 2007. 397–408

  26. Zhang S, Liew S C, Lam P P. Physical layer network coding. In: Proc MobiCOM, 2006. 358–365

  27. Koike-Akino T, Popovski P, Tarokh V. Optimized constellation for two-way wireless relaying with physical network coding. IEEE J Sel Areas Commun, 2009, 27: 773–787

    Article  Google Scholar 

  28. Li Z, Xia X G, Li B. Achieving full diversity and fast ML decoding via simple analog network coding for asynchronous two-way relay networks. IEEE Trans Commun, 2009, 57: 3672–3681

    Article  MathSciNet  Google Scholar 

  29. Wang H M, Xia X G, Yin Q. A linear analog network coding for asynchronous two-way relay networks. IEEE Trans Wireless Commun, 2010, 9: 3630–3637

    Article  Google Scholar 

  30. Wei S, Goeckel D, Valenti M. Asynchronous cooperative diversity. IEEE Trans Wireless Commun, 2006, 5: 1547–1557

    Article  Google Scholar 

  31. Li X. Space-time coded multi-transmission among distributed transmitters without perfect synchronization. IEEE Signal Process Lett, 2004, 11: 948–951

    Article  Google Scholar 

  32. Mei Y, Hua Y, Swami A, et al. Combating synchronization errors in cooperative relays. In: Proc IEEE ICASSP, Vol 3, 2005. 369–372

    Google Scholar 

  33. Zheng F C, Burr A G, Olafsson S. Near-optimum detection for distributed space-time block coding under imperfect synchronization. IEEE Trans Commun, 2008, 56: 1795–1799

    Article  Google Scholar 

  34. Li Y, Xia X G. A family of distributed space-time trellis codes with asynchronous cooperative diversity. IEEE Trans Commun, 2007, 55: 790–800. Partially presented in Proc the Fourth International Conf Information Processing in Sensor Networks (IPSN), UCLA, Los Angeles: 2005. 25–27

    Article  Google Scholar 

  35. Shang Y, Xia X G. Shift full rank matrices and applications in space-time trellis codes for relay networks with asynchronous cooperative diversity. IEEE Trans Inform Theory, 2006, 52: 3153–3167

    Article  MathSciNet  Google Scholar 

  36. Shang Y, Xia X G. Limited-shift-full-rank matrices with applications in asynchronous cooperative communications. IEEE Trans Inform Theory, 2007, 53: 4199–4126

    Article  MathSciNet  Google Scholar 

  37. Hammons A R. Algebraic space-time codes for quasi-synchronous cooperative diversity. In: Proceedings IEEE Conference Wireless Networks, Commun Mobile Comput, Maui, HI, 2005. 11–15

  38. Damen M O, Hammons A R. Delay-tolerant distributed TAST codes for cooperative diversity. IEEE Trans Inform Theory, 2007, 53: 3755–3773

    Article  MathSciNet  Google Scholar 

  39. Shang Y, Xia X G. Space-time trellis codes with asynchronous full diversity up to fractional symbol delays. IEEE Trans Wirel Commun, 2008, 7: 2473–2479

    Article  Google Scholar 

  40. Guo X, Xia X G. Distributed linear convolutive space-time codes for asynchronous cooperative communication networks. IEEE Trans Wirel Commun, 2008, 7: 1857–1861

    Article  Google Scholar 

  41. Zhong Z, Zhu S, Nallanathan A. Delay-tolerant distributed linear convolutional space-time code with minimum memory length under frequency-selective channels. IEEE Trans Wirel Commun, 2009, 8: 3944–3949

    Article  Google Scholar 

  42. Li Z, Xia X G. A simple Alamouti space-time transmission scheme for asynchronous cooperative systems. IEEE Signal Process Lett, 2007, 14: 804–807

    Article  Google Scholar 

  43. Rajan G S, Rajan B S. OFDM based distributed space time coding for asynchronous relay networks. In: Proc IEEE Int Conf Commun (ICC), 2008. 1118–1122

  44. Guo X, Xia X G. A distributed space-time coding in asynchronous wireless relay networks. IEEE Trans Wirel Commun, 2008, 7: 1812–1816

    Article  Google Scholar 

  45. Lu H F. Constructions of fully-diverse high-rate space-frequency codes for asynchronous cooperative relay networks. In: Proc IEEE International Symposium of Information Theory (ISIT). Toronto, 2008. 832–836

  46. Li Z, Xia X G, Lee M H. A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels. IEEE Trans Commun, 2010, 58: 2219–2224. Also downloadable at http://www.ee.udel. edu/~xxia/Pub.html/paper li xia 2010.pdf and http://www.ee.udel.edu/~xxia/Pub.html/correction li xia.pdf

    Article  Google Scholar 

  47. Li Y, Zhang W, Xia X G. Distributive high-rate space-frequency codes achieving full cooperative and multipath diversities for asynchronous cooperative communications. IEEE Trans Veh Technol, 2009, 58: 207–217

    Article  Google Scholar 

  48. Wittneben A. Base station modulation diversity for digital SIMULCAST. In: Proc IEEE VTC’93, 1993. 505–511

  49. Lindskog E, Paulraj A. A transmit diversity scheme for channels with intersymbol interference. In: Proc IEEE ICC’00. New Orleans, 2000. 307–311

  50. Damen M O, Gamal H E, Beaulieu N C. Systematic construction of full algebraic diversity constellations. IEEE Trans Inform Theory, 2003, 49: 3344–3349

    Article  MathSciNet  Google Scholar 

  51. Liu J, Zhang J K, Wong M. Full-diversity codes for MISO systems equipped with linear or ML detectors. IEEE Trans Inform Theory, 2008, 54: 4511–4527

    Article  MathSciNet  Google Scholar 

  52. Shang Y, Xia X G. On space-time block codes achieving full diversity with linear receivers. IEEE Trans Inform Theory, 2008, 54: 4528–4547

    Article  MathSciNet  Google Scholar 

  53. Wang H, Xia X G, Yin Q, et al. A family of space-time block codes achieving full diversity with linear receivers. IEEE Trans Commun, 2009, 57: 3607–3617

    Article  Google Scholar 

  54. Zhang W, Yuan J. A simple design of space-time block codes achieving full diversity with linear receivers. In: Proc ICASSP. Taipei, 2009. 2729–2732

  55. Zhang S B, Xia X G, Wang J Z. Cooperative performance and diversity gain of wireless relay networks (in press). Partially appeared in Proc IEEE VTC2011-Spring, Budapest, 2011. 15–18

  56. Gamal H E, Damen M O. Universal space-time coding. IEEE Trans Inform Theory, 2003, 49: 1097–1119

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang W, Xia X G, Ching P C. Full-diversity and fast ML decoding properties of general orthogonal space-time block codes for MIMO-OFDM systems. IEEE Trans Wirel Commun, 2007, 6: 1647–1653

    Article  Google Scholar 

  58. Li Z, Qu D, Zhu G. An equalization technique for distributed STBC-OFDM system with multiple carrier frequency offsets. In: Proc IEEE WCNC, vol 2, 2006. 839–843

    Google Scholar 

  59. Veronesi D, Goeckel D L. Multiple frequency offset compensation in cooperative wireless systems. In: Proc IEEE Globecom’06. San Francisco, 2006. 1–5

  60. Tian F, Xia X G, Ching P C. Signal detection for space-frequency coded cooperative communication system with multiple carrier frequency offsets. In: Proc IEEE Wireless Communications Networking Conf (WCNC). Hong Kong, 2007. 1221–1225

  61. Benvenuto N, Tomasin S, Veronesi D. Multiple frequency offsets estimation and compensation for cooeperative networks. In: Proc IEEE WCNC’07. Hong Kong, 2007. 892–896

  62. Tian F, Xia X G, Ching P C, et al. Signal detection in a space-frequency coded cooperative communication system with multiple carrier frequency offsets by exploiting specific properties of the code structure. IEEE Trans Veh Technol, 2009, 58: 3396–3409

    Article  Google Scholar 

  63. Wang H, Xia X G, Yin Q. Computationally efficient equalization for asynchronous cooperative communications with multiple frequency offsets. IEEE Trans Wirel Commun, 2009, 8: 648–655

    Article  Google Scholar 

  64. Wang H M, Yin Q, Xia X G. Fast Kalman equalization for time-frequency asynchronous cooperative relay networks with distributed space-time codes. IEEE Trans Veh Technol, 2010, 59: 4651–4658

    Article  Google Scholar 

  65. Li Z, Xia X G. An Alamouti coded OFDM transmission for cooperative systems robust to both timing errors and frequency offsets. IEEE Trans Wirel Commun, Part II, 2008, 7: 1839–1844

    Google Scholar 

  66. Li X, Ng F, Han T. Carrier frequency offset mitigation in asynchronous cooperative OFDM transmissions. IEEE Trans Signal Process, 2008, 56: 675–685

    Article  MathSciNet  Google Scholar 

  67. Zhao Y, Haggman S G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans Commun, 2001, 49: 1185–1191

    Article  MATH  Google Scholar 

  68. Wang H, Xia X G, Yin Q. Distributed space-frequency codes for cooperative communication systems with multiple carrier frequency offsets. IEEE Trans Wirel Commun, 2009, 8: 1045–1055

    Article  Google Scholar 

  69. Wang H, Yin Q, Xia X G. Full diversity space-frequency codes for frequency asynchronous cooperative relay networks with linear receivers. IEEE Trans Commun, 2011, 59: 236–247

    Article  Google Scholar 

  70. Tian F, Xia X G, Ma K, et al. On the full diversity property of a space-frequency code family with multiple frequency offsets in cooperative communication systems. J Commun, 2010, 5: 317–331

    Google Scholar 

  71. Zhong Z, Zhu S, Lü G. Distributed space-time code for asynchronous two-way wireless relay networks under frequency-selective channels. In: Proc IEEE International Conf Commun (ICC). Dresten, 2009. 1–5

  72. Zhang S, Liew S C, Lam P P. On the synchronization of physical-layer network coding. In: Proc IEEE Inform Theory Workshop (ITW), 2006. 404–408

  73. Wang D, Fu S, Lu K. Channel coding design to support asychronous phasical layer network coding. In: Proc IEEE Globecom’09. Honolulu, HI, 2009. 1–6

  74. Sirkeci-Mergen B, Scaglione A. Randomized space-time coding for distributed cooperative communication. IEEE Trans Signal Process, 2007, 55: 5003–5017

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangGen Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Xia, X. Asynchronous cooperative communication systems: A survey on signal designs. Sci. China Inf. Sci. 54, 1547–1561 (2011). https://doi.org/10.1007/s11432-011-4306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4306-8

Keywords

Navigation