Skip to main content
Log in

Data acquisition and simulation of natural phenomena

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Virtual natural phenomena obtained through mathematical-physical modeling and simulation as well as graphics emulation can meet the user’s requirements for sensory experiences to a certain extent but they can hardly have the same accurate physical consistency as real natural phenomena. The technology for data acquisition and natural phenomena simulation can enable us to obtain multi-dimensional and multi-modal data directly from real natural phenomena and, based on these real data, to establish digital models highly consistent with real natural phenomena in appearance, physics, behavior or many other aspects, thus making a virtual natural phenomenon a direct mapping of real natural phenomenon. This approach is conducive to resolving problems concerning the reliability and availability of virtual reality. At present the technology for acquiring and simulating dada of natural phenomena is still in its initial stage. This paper gives a review of the related investigations. Firstly, we briefly introduce the basic methods and techniques concerned, then, based on the difference between the basic elements of various natural phenomena, we discuss the current studies on such natural phenomena as light, water, fire, smoke, dynamic terrain, etc., and finally, in connection with issues in the present research and possible future direction of development, we put forth a number of theoretical and technical problems, hoping they can be resolved in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Unger J, Wenger A, Hawkins T, et al. Capturing and rendering with incident light fields. In: Proc. of 14th Eurographics Workshop on Rendering, Leuven, Belgium, 2003. 141–149

  2. Stumpfel J, Jones A, Wenger A, et al. Direct HDR capture of the sun and sky. In: Proc. AfriGraph: African Graphics Association Conference, Cape Town, South Africa, 2004. 145–149

  3. Hawkins T, Einarsson P, Debevec P. Acquisition of time-varying participating media. ACM Trans Graph, 2005, 24: 812–815

    Article  Google Scholar 

  4. Garg K, Nayar S K. Photorealistic rendering of rain streaks. ACM Trans Graph, 2006, 25: 996–1002

    Article  Google Scholar 

  5. Garg K, Krishnan G, Nayar S K. Material based splashing of water drops. In: Proceedings of Eurographics Symposium on Rendering, Grenoble, France, 2007. 13: 1–12

  6. Narasimhan S G, Nayar S K, Sun B, et al. Structured light in scattering media. Proc IEEE ICCV, 2005, 1: 420–427

    Google Scholar 

  7. Sun B, Sunkavalli K, Ramamoorthi R, et al. Time-varying BRDFs. IEEE Trans Visual Comput Graph, 2007, 13: 595–609

    Article  Google Scholar 

  8. Lintu A, Lensch H P A, Magnor M, et al. 3D reconstruction of emission and absorption in planetary nebulae. In: IEEE/EG International Symposium on Volume Graphics, Prague, Czech Republic, Citeseer, 2007. 1–8

  9. Wenger S, Fern ndez J A, Morisset C, et al. Algebraic 3D reconstruction of planetary nebulae. In: WSCG Conference Proceedings, Plzen, Czech Republic, 2009. 1–8

  10. Hildebrand K. Rendering and reconstruction of astronomical objects. Master’s Thesis. Weimar: Bauhaus University, 2005

    Google Scholar 

  11. StephanWenger A S, Schutt O, Magnor M. Image-based lunar surface reconstruction. Lect Note Comput Sci (LNCS), 2009, 5748: 382–391

    Article  Google Scholar 

  12. Haber J, Magnor M, Seidel H P. Physically-based simulation of twilight phenomena. ACM Trans Graph, 2005, 24: 1353–1373

    Article  Google Scholar 

  13. Lintu A, Haber J, Magnor M. Realistic solar disc rendering. In: WSCG 2005 Full Papers Conference Proceedings, Plzen-Bory, Czech Republic, 2005. 79–86

  14. Ghosh A, Heidrich W, Achutha S, et al. A basis illumination approach to BRDF measurement. Int J Comput Vision, 2010, 90: 183–197

    Article  Google Scholar 

  15. Goesele M, Granier X, Heidrich W, et al. Accurate light source acquisition and rendering. ACM Trans Graph, 2003, 22: 621–630

    Article  Google Scholar 

  16. Atcheson B, Ihrke I, Heidrich W, et al. Time-resolved 3D capture of non-stationary gas flows. ACM Trans Graph, 2008, 27: 1–9

    Article  Google Scholar 

  17. Hu Y, Qi Y, Tong X. Image-based modeling method of inhomogeneous single-scattering participating media. Sci China Ser F-Inf Sci, 2010, 53: 1141–1150

    Article  MathSciNet  Google Scholar 

  18. Peng Q, Bao H, Jin X. Procedural Elements for Computer Graphics. Beijing: Science Press, 1999. 3

    Google Scholar 

  19. Debevec P. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Computer Graphics (SIGGRAPH’ 98 Proceedings), Orlando, Florida, USA, 1998. 189–198

  20. Goesele M, Granier X, Heidrich W, et al. Accurate light source acquisition and rendering. ACM Trans Graph, 2003, 22: 621–630

    Article  Google Scholar 

  21. Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH’97, Los Angeles, USA, 1997. 369–378

  22. Ihrke I, Stich T, Gottschlich H, et al. Fast incident light field acquisition and rendering. J WSCG, 2008, 16: 1–3

    Google Scholar 

  23. Matusik W, Pfister H, Brand M, et al. A data-driven reflectance model. ACM Trans Graph, 2003, 22: 759–769

    Article  Google Scholar 

  24. Gardner A, Tchou C, Hawkins T, et al. Linear light source reflectometry. ACM Trans Graph, 2003, 22: 749–758

    Article  Google Scholar 

  25. Hawkins T, Einarsson P, Debevec P. A dual light stage. In: Rendering Techniques 2005 (Proc. Eurographics Symposium on Rendering), Konstanz, Germany, 2005. 91–98

  26. Peers P, Hawkins T, Debevec P. A reflective light stage. USC Institute for Creative Technologies Technical Report ICT-TR-04. 2006

  27. Ben-Ezra M, Wang J, Wilburn B, et al. An LED-only BRDF measurement device. In: IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008. 1–8

  28. Mastin G A, Watterberg P A, Mareda J F. Fourier synthesis of ocean scenes. IEEE Comput Graph Appl, 1987, 7: 16–23

    Article  Google Scholar 

  29. Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. ACM Comput Graph, 1990, 24: 49–57

    Article  Google Scholar 

  30. Jones A, Bolas M, McDowall I, et al. Concave surround optics for rapid multiview imaging. In: ACM SIGGRAPH 2006 Research posters. Boston, Massachusetts: ACM, 2006

  31. Wang H, Liao M, Zhang Q, et al. Physically guided liquid surface modeling from videos. ACM Trans Graph, 2009, 28: 90–100

    Google Scholar 

  32. Wang H. Practical water animation using physics and image based methods. PhD Dissertation. Atlanta: Georgia Institute of Technology, 2009

    Google Scholar 

  33. Wicke M, Stanton M, Treuille A. Modular bases for fluid dynamics. ACM Trans Graph, 2009, 28: 1–8

    Article  Google Scholar 

  34. Wang J, Gu Y. A survey on the flame simulation methods. J Image Graph, 2007, 12: 1961–1970

    Google Scholar 

  35. Petty C H, Picard R W. Synthesizing flames and their spreading. In: Fifth Eurographics Workshop on Animation and Simulation, Olso, Norway, 1994. 105–117

  36. Chiba N, Muraoka K, Takahashi H, et al. Two-dimensional visual simulation of flames, smoke and the spread of fire. J Visual Comput Anim, 1994, 5: 37–53

    Article  Google Scholar 

  37. Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive techniques, Los Angeles, CA, USA, 1995. 129–136

  38. Yngve G D, O’Brien J F, Hodgins J K. Animating explosions. Proc SIGGRAPH, 2000, 19: 29–36

    Article  Google Scholar 

  39. Losasso F, Irving G, Guendelman E, et al. Melting and burning solids into liquids and gases. IEEE Trans Visual Comput Graph, 2006, 12: 343–352

    Article  Google Scholar 

  40. Hong J, Shinar T, Fedkiw R. Wrinkled flames and cellular patterns. ACM Trans Graph, 2007, 26: 47–53

    Article  Google Scholar 

  41. Rose B M, McAllister D F. Real-time photorealistic stereoscopic rendering of fire. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Electronic Imaging, Citeseer, 2007. 57–70

  42. Horvath C, Geiger W. Directable, high-resolution simulation of fire on the GPU. ACM Trans Graph, 2009, 28: 1–8

    Article  Google Scholar 

  43. Musgrave P K. Great balls of fire. In: SIGGRAPH’97 Animations Sketches, Visual Proceedings, Los Angeles, GA, USA, 1997. 259–268

  44. Neff M, Fiume E E. A visual model for blast waves and fracture. In: Proceedings of Graphics Interface, Kingston, Ontario, Canada, 1999. 193–202

  45. Mazarak O, Martin S C, Amanatin E S J. Animation exploding objects. In: Proceedings of Graphics Interface, Kingston, Ontario, Canada, 1999. 211–218

  46. Rasmussen N, Nguyen D Q, Geiger W, et al. Smoke simulation for large scale phenomena. ACM Trans Graph, 2003, 22: 703–707

    Article  Google Scholar 

  47. Sewall J, Galoppo N, Tsankov G, et al. Visual simulation of shockwaves. Graph Models, 2009, 71: 126–138

    Article  Google Scholar 

  48. Beaudoin P, Paquet S, Poulin P. Realistic and controllable fire simulation. In: Proc. Graphics Interface, Ottawa, Ontario, Canada, 2001. 159–166

  49. Hasinoff S W. Three-dimensional reconstruction of fire from images. MSc Thesis. Toronto: University of Toronto, 2002

    Google Scholar 

  50. Hasinoff S W, Kutulakos K N. Photo-consistent 3D fire by flame-sheet decomposition. In: Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV’ 03), Nice, France, 2003. 1184–1191

  51. Hasinoff S W, Kutulakos K N. Photo-consistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE Trans Patt Anal Mach Intell, 2007, 29: 870–885

    Article  Google Scholar 

  52. Ihrke I, Magnor M. Image-based tomographic reconstruction of flames. In: Proceedings of the 2004 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Grenoble, France, 2004. 367–375

  53. Ihrke I, Berger K, Atcheson B, et al. Tomographic reconstruction and efficient rendering of refractive gas flows. In: Imaging Measurement Methods for Flow Analysis. Berlin: Springer, 2009. 145–154

    Chapter  Google Scholar 

  54. Atcheson B, Ihrke I, Bradley D, et al. Imaging and 3D tomographic reconstruction of time-varying inhomogeneous refractive index fields. Tech. Rep. TR-2007-06, University of British Columbia, Department of Computer Science, Jan. 2007

  55. Ihrke I. Reconstruction and rendering of time-varying natural phenomena. PhD Dissertation. Saarbrücken: Saarland University, 2007

    Google Scholar 

  56. Berger K, Ihrke I, Atcheson B, et al. Tomographic 4D reconstruction of gas flows in the presence of Occluders. In: Vision, Modeling, and Visualization Workshop (VMV), Braunschweig, Germany, 2009. 1–8

  57. Fedkiw R, Stam J, Jensen H W, Visual simulation of smoke. In: Proc. of ACM SIGGRAPH, Los Angeles, California, USA, 2001. 15–22

  58. Zhou K, Ren Z, Lin S, et al. Real-time smoke rendering using compensated ray marching. ACM Trans Graph, 2008, 27:36: 1–12

    Google Scholar 

  59. Xu H, Zhao L, Xiao Q. Study and implementation of efficient rendering of dynamic clouds. Comput Simul, 2006, 23: 202–206

    Google Scholar 

  60. Miyazaki R, Yoshida S, Dobashi Y, et al. A method for modeling clouds based on atmospheric fluid dynamics. In: Proc. 9th Computer Graphics and Applications (PG’01), Tokyo, Japan, 2001. 363–372

  61. Gao Y, Li C, Hu S. Simulating gaseous fluid with low and high speeds. Comput Graph Forum, Special issue of Pacific Graphics, 2009, 28: 1845–1852

    Google Scholar 

  62. Van Vliet E, Van Bergen S M, Derksen J J, et al. Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor. Exp Fluids, 2004, 37: 1–21

    Article  Google Scholar 

  63. Crimaldi J P. Planar laser induced fluorescence in aqueous flows. Exp Fluids, 2008, 44: 851–863

    Article  Google Scholar 

  64. Fuchs C, Chen T, Goesele M, et al. Density estimation for dynamic volumes. Comput Graph, 2007. 31: 205–211

    Article  Google Scholar 

  65. Losasso F, Irving G, Guendelman E, et al. Melting and burning solids into liquids and gases. IEEE Trans Visual Comput Graph, 2006, 12: 343–352

    Article  Google Scholar 

  66. Kamat V R, Martinez J C. Automated generation of large-scale dynamic terrain in 3D animation of simulated construction processes. In: Proc. CONVR2003 Conference on Comstruction Application of Virtual Reality. Middlesbrough, US, 2003. 63–76

  67. He Y. Real-time visualization of dynamic terrain for ground vehicle simulation. PhD Dissertation. Iowa: The University of Iowa, 2000

    Google Scholar 

  68. Wang L, Li S, Pan X. Real-time visualization of dynamic terrain. Chin J Comput, 2003, 26: 1524–1531

    Google Scholar 

  69. Van Pabst J, Jense H. Dynamic terrain generation based on multifractal techniques. In: Proc. Intl. Workshop on High Performance Computing for Computer Graphics and Visualization, Citeseer, 1995. 186–203

  70. Nishita T, Dobashi Y. Modeling and rendering of various natural phenomena consisting of particles. In: Proc. Computer Graphics International Conference, Hong Kong, China, 2001. 149–156

  71. Narain R, Kwatra V, Lee H P, et al. Feature-guided dynamic texture synthesis on continuous flows. In: Eurographics Symposium on Rendering Conference (EGSR), Grenoble, France, 2007. 361–370

  72. Rogge L, Lipski C, Magnor M. Visualization of the continental drift in real-time. J WSCG, 2010. 18: 9–16

    Google Scholar 

  73. Garg K, Nayar S K. Photometric model of a rain drop. Technical Report, Columbia University, 2003

  74. Garg K, Nayar S K. Vision and rain. Int J Comput Vision, 2007, 75: 3–27

    Article  Google Scholar 

  75. Wang C, Yang Z, Zhang X, et al. Real-time modeling and rendering of wet road in raining scene. J Comput-Aid Design Comput Graph, 2008, 20: 713–717

    Google Scholar 

  76. Barnum P C, Kanade T, Narasimhan S. Spatio-temporal frequency analysis for removing rain and snow from videos. In: Workshop on Photometric Analysis for Computer Vision (PACV), in conjunction with ICCV, 2007. 1–8

  77. Barnum P C, Narasimhan S, Kanade T. Analysis of rain and snow in frequency space. Int J Comput Vision, 2010, 86: 256–274

    Article  Google Scholar 

  78. Fearing P. Computer modeling of fallen snow. In: SIGGRAPH’00: Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 2000. 37–46

    Chapter  Google Scholar 

  79. Moeslund T B, Madsen C B, Aagaard M, et al. Modeling falling and accumulating snow. In: Vision, Video and Graphics, Edinburgh, UK, 2005. 61–68

  80. Wang C, Horel K, Longay S, et al. Real-time snowing simulation. Visual Comput, 2006, 22: 315–323

    Article  Google Scholar 

  81. Langer M S, Zhang L, Klein A W, et al. A spectral-particle hybrid method for rendering falling snow. In: Proceedings of the 15th Eurographics Workshop on Rendering Techniques, Norköping, Sweden, 2004. 217–226

  82. Saltvik I, Elster A C, Nagel H R. Parallel methods for real-time visualization of snow. In: Applied Parallel Computing. State of the Art in Scientific Computing. Berlin: Springer-Verlag, 2008. 218–227

    Google Scholar 

  83. Festenberg N, Gumhold S. A geometric algorithm for snow distribution in virtual scenes. In: Eurographics Workshop on Natural Phenomena, Munich, Germany, 2009. 15–25

  84. Stoffel M. Numerical modeling of snow using finite elements. Elements. PhD Thesis. ETH Zürich, 2005

  85. Kim T, Lin M C. Visual simulation of ice crystal growth. In: SCA’ 03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2003. 86–97

  86. Kim T. Physically-based simulation of ice formation. PhD Thesis. Chapel Hill: University of North Carolina, 2006

    Google Scholar 

  87. Kim T, Lin M C. Physically based animation and rendering of lightning. In: PG’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference on (PG’04), IEEE Computer Society, Washington, DC, USA, 2004. 267–275

  88. Pa Ubicki W, Horel K, Longay S, et al. Self-organizing tree models for image synthesis. ACM Trans Graph, 2009, 28:58: 1–10

    Article  Google Scholar 

  89. Sumner R W, O’Brien J F, Hodgins J K. Animating sand, mud, and snow. In: Proceedings of Graphics Interface. Ontario: Canadian Information Processing Society, 1998. 125–132

    Google Scholar 

  90. Onoue K, Nishita T. Virtual sandbox. In: Proc. of Pacific Graphics (2003), Canmore, Alberta, Canada, 2003. 252–260

  91. Pla-Castells M, García-Fernández I, Martinez-Dura R J, et al. Physically-based interactive sand simulation. In: Eurographics, Mania, 2008. 21–24

  92. Miller G, Pearce A. Globular dynamics: A connected particle system for animating viscous fluids. Comput Graph, 1989, 13: 305–309

    Article  Google Scholar 

  93. Bell N, Yu Y, Mucha PJ. Particle-based simulation of granular materials. In: ACM SIGGRAPH/Eurographics Symposium on Computer animation. New York: ACM Press, 2005. 77–86

    Chapter  Google Scholar 

  94. Zhu Y, Bridson R. Animating sand as a fluid. ACM Trans Graph, 2005, 24: 965–971

    Article  Google Scholar 

  95. Wojtan C, Carlson M, Mucha P J, et al. Animating corrosion and erosion. In: Eurographics Workshop on Natural Phenomena. Prague: Czech Republic, 2007. 21–29

    Google Scholar 

  96. Falappi S, Gallati M. SPH simulation of water waves generated by granular landslides. In: Proceedings of the 32nd Congress of IAHR, Venice, Italy, 2007, 1: 106–116

  97. Rungjiratananon W, Szego Z, Kanamori Y, et al. Real-time animation of sand-water interaction. Comput Graph Forum, 2008, 27: 1887–1893

    Article  Google Scholar 

  98. Lenaerts T, Dutré P. Mixing fluids and granular materials. Comput Graph Forum, 2009, 28: 213–218

    Article  Google Scholar 

  99. Liu S, Wang Z, Gong Z, et al. Physically based animation of sandstorm. Comput Anim Virt Worlds, 2007, 18: 259–269

    Article  Google Scholar 

  100. Jensen H W, Legakis J, Dorsey J. Rendering of wet materials. In: Rendering Techniques’ 99. Berlin: Springer-Verlag, 1999. 273–282

    Google Scholar 

  101. Lu J, Georghiades A S, Rushmeier H, et al. Synthesis of material drying history: Phenomenon modeling, transferring and rendering. In: Eurographics Workshop on Natural Phenomena. Dublin: ACM, 2005. 175–184

    Google Scholar 

  102. Liu S, Wang Z, Gong Z, et al., Physically based modeling and animation of tornado. J Zhejiang Univ Sci A, 2006, 7: 1099–1106

    Article  MATH  Google Scholar 

  103. Liu S, Wang Z, Gong Z, et al. Simulation of atmospheric binary mixtures based on two-fluid model. Graph Models, 2008, 70: 117–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinPing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q. Data acquisition and simulation of natural phenomena. Sci. China Inf. Sci. 54, 683–716 (2011). https://doi.org/10.1007/s11432-011-4210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4210-2

Keywords

Navigation