Skip to main content
Log in

Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper characterizes two important properties of the photon number distribution of the heralded pair coherent state (HPCS) photon source. The formula of secret key generation rates for the decoy-state quantum key distribution with intensity fluctuation source is proved to hold true for the HPCS photon source. By numerical simulations, we show that the three-intensity decoy-state protocols for the HPCS photon source is efficiently getting close to the ideal decoy-state method. Moreover, we find that the HPCS source is more robust against intensity fluctuation than the weak coherent photon (WCP) source, but less stable than the heralded single photon source (HSPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Publish-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore, 1984. 175

  2. Raymond, Cai Y Q, Scarani V. Finite-key analysis for practical implementation of quantum key distribution. New J Phys, 2009, 11: 045024

    Article  Google Scholar 

  3. Lu Z X, Yu L, Li K, et al. Reverse reconciliation for continuous variable quantum key distribution. Sci China Phys, Mech Astron, 2010, 53: 100–105

    Article  Google Scholar 

  4. Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices. Quantum Information and Computation, 2004, 4: 325–360

    MATH  MathSciNet  Google Scholar 

  5. Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chin Sci Bull, 2008, 53: 1310–1314

    Article  Google Scholar 

  6. Qian X D, He G Q, Zeng G H. Realization of error correction and reconciliation of continuous quantum key distribution in detail. Sci China Ser F-Inf Sci, 2009, 52: 1598–1604

    Article  MATH  MathSciNet  Google Scholar 

  7. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  8. Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  9. Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci China Ser F-Inf Sci, 2009, 52: 18–22

    Article  MATH  MathSciNet  Google Scholar 

  10. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050

    Article  Google Scholar 

  11. Shor P, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2001, 85: 441

    Article  Google Scholar 

  12. Kraus B, Gisin N, Renner R. Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys Rev Lett, 2005, 95: 080501

    Article  Google Scholar 

  13. Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  Google Scholar 

  14. Koashi M. Unconditional security of coherent-state quantum key distribution with a strong phase reference pulse. Phys Rev Lett, 2004, 93: 120501

    Article  Google Scholar 

  15. Dalvit D A R, de Matos Filho R L, Toscano F. Quantum metrology at the Heisenberg limit with ion traps. New J Phys, 2006, 8: 276

    Article  Google Scholar 

  16. Scarani V, Acin A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations. Phys Rev Lett, 2004, 92: 057901

    Article  Google Scholar 

  17. Branciard C, Gisin N, Kraus B, et al. Security of two quantum cryptography protocols using the same four qubit states. Phys Rev A, 2005, 72: 032301

    Article  Google Scholar 

  18. Lo H K, Ma X F, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  Google Scholar 

  19. Wang X B. Beating the PNS attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

    Article  Google Scholar 

  20. Wang X B. A decoy-state protocol for quantum cryptography with 4 intensities of coherent light. Phys Rev A, 2005, 72: 012322

    Article  Google Scholar 

  21. Fung C H F, Tamaki K, Lo H K. Performance of two quantum-key-distribution protocols. Phys Rev A, 2006, 73: 012337

    Article  Google Scholar 

  22. Horikiri T, Kobayashi T. Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys Rev A, 2006, 73: 032331

    Article  Google Scholar 

  23. Zhang S L, Zou X B, Li C F, et al. A universal coherent source for quantum key distribution. Chin Sci Bull, 2009, 54: 1863–1871

    Article  MATH  Google Scholar 

  24. Yin Z Q, Han Z F, Chen W, et al, Experimental decoy quantum key distribution up to 130 km fiber. Chin Phys Lett, 2008, 25: 3547

    Article  Google Scholar 

  25. Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Optics Express, 2009, 17: 6540–6549

    Article  Google Scholar 

  26. Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-possionian heralded single-photon source. Phys Rev Lett, 2008, 100: 090501

    Article  Google Scholar 

  27. Yin Z Q, Han Z F, Sun F W, et al. Decoy state quantum key distribution with modified coherent state. Phys Rev A, 2007, 76: 014304

    Article  Google Scholar 

  28. Zhao Y, Qi B, Ma X F, et al. Experimental quantum key distribution with decoy states. Phys Rev Lett, 2006, 96: 070502

    Article  Google Scholar 

  29. Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors. Phys Rev A, 2008, 77: 042311

    Article  Google Scholar 

  30. Wang X B, Yang L, Peng C Z, et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J Phys, 2009, 11: 075006

    Article  Google Scholar 

  31. Wang S, Zhang S L, Li H W, et al. Decoy-state theory for the heralded single-photon source with intensity fluctuations. Phys Rev A, 2009, 79: 062309

    Article  Google Scholar 

  32. Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission. Phys Rev Lett, 1986, 57: 827–830

    Article  Google Scholar 

  33. Usenko V C, Paris Matteo G A. Multiphoton communication in lossy channels with photon-number entangled states. Phys Rev A, 2007, 75: 043812

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanSu Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Bao, W. & Fu, X. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci. China Inf. Sci. 53, 2485–2494 (2010). https://doi.org/10.1007/s11432-010-4126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4126-2

Keywords

Navigation