Science China Information Sciences

, Volume 53, Issue 9, pp 1727–1737 | Cite as

A centrality measure based on spectral optimization of modularity density

Research Papers

Abstract

Centrality analysis has been shown to be a valuable method for the structural analysis of complex networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. In this paper, we show that the optimization process of modularity density can be written in terms of the eigenspectrum of kernel matrix. Based on the eigenvectors belonging to the largest eigenvalue of kernel matrix, we present a new centrality measure that characterizes the contribution of each node to its assigned community in a network, called modularity density centrality. The measure is illustrated and compared with the standard centrality measures by using respectively an artificial example and a classic network data set. The statistical distribution of modularity density centrality is investigated by considering large computer generated graphs and two large networks from the real world. Experimental results show the significance of the proposed approach.

Keywords

centrality modularity density centrality kernel matrix eigenspectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christley R M, Pinchbeck G L, Bowers R G, et al. Infection in social networks: Using network analysis to identify high-risk individuals. Am J Epidem, 2005, 162: 1024–1031CrossRefGoogle Scholar
  2. 2.
    Langville A N, Meyer C D. A survey of eigenvector methods for web information retrieval. SIAM Rev, 2005, 47: 135–161MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brandes U. A faster algorithm for betweenness centrality. J Athemat Sociol, 2001, 25: 163–177MATHCrossRefGoogle Scholar
  4. 4.
    Freeman L C, Borgatti S P, White D R. Centrality in valued graphs: a measure of betweenness based on network flow. Social Netw, 1991, 13: 141–154CrossRefMathSciNetGoogle Scholar
  5. 5.
    Newman M E J. A measure of betweenness centrality based on random walks. Social Netw, 2005, 27: 39–54CrossRefGoogle Scholar
  6. 6.
    Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the internet. Phys Rev Lett, 2001, 87: 258701CrossRefGoogle Scholar
  7. 7.
    Ma H W, Zeng A P. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19: 1423–1430CrossRefGoogle Scholar
  8. 8.
    Latora V, Marchiori M. A measure of centrality based on networks efficiency. New J Phys, 2007, 9: 188CrossRefGoogle Scholar
  9. 9.
    Almendral J A, Díaz-Guilera A. Dynamical and spectral properties of complex networks. New J Phys, 2007, 7: 187CrossRefGoogle Scholar
  10. 10.
    Xing L Y, Liu Z X, Chen Z Q, et al. Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers. Sci China Ser F-Inf Sci, 2008, 51: 511–523CrossRefGoogle Scholar
  11. 11.
    Amjad M. Dynamic replication of web contents. Sci China Ser F-Inf Sci, 2007, 50: 811–830MATHCrossRefGoogle Scholar
  12. 12.
    Wang G X, Shen Y, Luan E J. A measure of centrality based on modularity matrix. Prog Nat Scie, 2008, 18: 1043–1047CrossRefGoogle Scholar
  13. 13.
    Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E, 2006, 74: 036104CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fortunato S, Barthélemy M. Resolution limit in community detection. Proc Natl Acad Sci USA, 2007, 104: 36–41CrossRefGoogle Scholar
  15. 15.
    Rosvall M, Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci USA, 2007, 104: 7327–7331CrossRefGoogle Scholar
  16. 16.
    Muff S, Rao F, Caflisch A. Local modularity measure for network clusterizations. Phys Rev E, 2005, 72: 056107CrossRefGoogle Scholar
  17. 17.
    Koschützki D, Schreiber F. Comparison of centralities for biological networks. In: Proceedings of the German Conference on Bioinformatics 2004; Lecture Notes in Informatics. Vol. P-53. Berlin: Springer, 2004. 199–206Google Scholar
  18. 18.
    Li Z P, Zhang S H, Wang R S, et al. Quantitative function for community detection. Phys Rev E, 2008, 77: 036109CrossRefGoogle Scholar
  19. 19.
    Borgatti S P, Everett M G. A graph-theoretic perspective on centrality. Social Netw, 2006, 28: 466–484CrossRefGoogle Scholar
  20. 20.
    Freeman L C. A set of measures of centrality based upon betweenness. Sociometry, 1977, 40: 35–41CrossRefGoogle Scholar
  21. 21.
    Scott J. Social Network Analysis: a Handbook. 2nd ed. London: Sage Publications, 2000Google Scholar
  22. 22.
    Bonacich P. Factoring and weighting approaches to status scores and clique identification. J Math Sociol, 1972, 2: 113–120CrossRefGoogle Scholar
  23. 23.
    Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004Google Scholar
  24. 24.
    Dhillon I S, Guan Y, Kulis B. Kernel k-means, spectral clusterng and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004. 551–556CrossRefGoogle Scholar
  25. 25.
    Zhang S H, Wang R S, Zhang X S. Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys A, 2007, 374: 483–490CrossRefGoogle Scholar
  26. 26.
    Zhang S H, Wang R S, Zhang X S. Uncovering fuzzy community structure in complex networks. Phys Rev E, 2007, 76: 046103CrossRefGoogle Scholar
  27. 27.
    Clark J, Holton D A. A First Look at Graph Theory. Singapore: World Scientific Press, 1991MATHGoogle Scholar
  28. 28.
    Everett M G, Borgatti S P. The centrality of groups and classes. J Math Sociol, 1999, 23: 181–201MATHCrossRefGoogle Scholar
  29. 29.
    Crucitti P, Latora V, Porta S. Centrality in networks of urban streets. Chaos: an interdisciplinary. J Nonlin Sci, 2006, 16: 015113Google Scholar
  30. 30.
    Estrada E, Rodríguez-Velózquez J A. Subgraph centrality in complex networks. Phys Rev E, 2005, 71: 056103CrossRefMathSciNetGoogle Scholar
  31. 31.
    Sen P, Dasguqta S, Chatterjee A, et al. Small-world properties of the Indian railway network. Phys Rev E, 2003, 67: 036106CrossRefGoogle Scholar
  32. 32.
    Zhang S H, Jin G X, Zhang X S, et al. Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics, 2007, 7: 2856–2869CrossRefGoogle Scholar
  33. 33.
    Jeong H, Tombor B, Albert Z N, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 651–654CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringXidian UniversityXi’anChina
  2. 2.College of ComputerXi’an University of Science and TechnologyXi’anChina

Personalised recommendations