Skip to main content
Log in

Physically-based fluid animation: A survey

  • Special Focus
  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y Q, Liu X H, Zhu H B,et al. Physically based fluid simulation in computer animation. J Comput-Aid Des Comput Graph, 2005, 17(12): 2581–2549

    Google Scholar 

  2. Osher S, Fedkiw R. Level-set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag New York Inc., 2003

    MATH  Google Scholar 

  3. Pharr M, Humphreys G. Physically Based Rendering: From Theory to Implementation. San Francisco: Morgan Kaufmann Publishers Inc., 2004

    Google Scholar 

  4. Bridson R, Muller-Fischer M. Fluid simulation: Siggraph 2007 course notes. In: ACM SIGGRAPH 2007 Courses. New York: ACM, 2007. 1–81

    Google Scholar 

  5. Reeves W T. Particle systems-A technique for modeling a class of fuzzy objects. Comput Graph, 1983, 17(3): 359–376

    Article  Google Scholar 

  6. Monaghan J J. Smoothed particle hydrodynamics. Ann Rev Astronomy Astrophys, 1992, 30: 543–574

    Article  Google Scholar 

  7. Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2003. 154–159

    Google Scholar 

  8. Müller M, Keiser R, Nealen A, et al. Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2004. 141–151

    Chapter  Google Scholar 

  9. Premoze S, Tasdizen T, Bigler J, et al. Particle-based simulation of fluids. Comput Graph Forum, 2003, 22(3): 401–410

    Article  Google Scholar 

  10. Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1995. 129–136

    Chapter  Google Scholar 

  11. Takeshita D, Ota S, Tamura M, et al. Particle-based visual simulation of explosive flames. In: 11th Pacific Conference on Computer Graph Applications. 2003. 482–486

  12. Keiser R, Adams B, Gasser D, et al. A unified Lagrangian approach to solid-fluid animation. In: Eurographics Symposium on Point-Based Graphics. 2005. 125–133

  13. Cummins S, Rudman M. An SPH projection method. J Comput Phys, 1999, 152(2): 584–607

    Article  MATH  MathSciNet  Google Scholar 

  14. Becker M, Teschner M. Weakly compressible SPH for free surface flows. In: Gleicher M, Thalmann D, eds. Symposium on Computer Animation, Eurographics Association, 2007. 209–217

  15. Anderson J D, Jr. Computational Fluid Dynamics: The Basics with Applications. New York: McGraw-Hill Inc., 1995

    Google Scholar 

  16. Harlow F H, Welch J E. Numerical calculation of timedependent viscous incompressible flow of fluid with free surface. Phys Fluids, 1965, 8(12): 2182–2189

    Article  Google Scholar 

  17. Stam J. Real-time fluid dynamics for games. In: Proceedings of the Game Developer Conference, 2003

  18. Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. Comput Graph, 1990, 24(4): 49–57

    Article  Google Scholar 

  19. Bridson R. Shallow water discretization, Lecture Notes Animation Physics, 2005

  20. Foster N, Metaxas D. Realistic animation of liquids. Graph Model Image Proc, 1996, 58(5): 471–483

    Article  Google Scholar 

  21. Stam J. Stable fluids. In: Proceedings of the 26th Annual Conference on Computer graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1999. 121–128

    Chapter  Google Scholar 

  22. Foster N, Fedkiw R. Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001. 23–30

    Chapter  Google Scholar 

  23. Enright D, Marschner S, Fedkiw R. Animation and rendering of complex water surfaces. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2002. 736–744

    Chapter  Google Scholar 

  24. Li W, Wei X M, Kaufman A. Implementing lattice boltzmann computation on graphics hardware. Visual Comput, 2003, 19: 444–456

    Google Scholar 

  25. Chen S Y, Doolen G D. Lattice boltzmann method for fluid flows. Ann Rev Fluid Mech, 1998, 30(1): 329–364

    Article  MathSciNet  Google Scholar 

  26. Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. Phys Rev, 1954, 94: 511–525

    Article  MATH  Google Scholar 

  27. Wei X M, Zhao Y, Fan Z, et al. Natural phenomena: blowing in the wind. In: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003. 75–85

  28. Losasso F, Shinar T, Selle A, et al. Multiple interacting liquids. ACM Trans Graph, 2006, 25(3): 812–819

    Article  Google Scholar 

  29. Kim J, Cha D, Chang B, et al. Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2006. 335–344

  30. Thuerey N, Sadlo F, Schirm S, et al. Real-time simulations of bubbles and foam within a shallow water framework. In: Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2007. 191–198

  31. Hong J M, Lee H Y, Yoon J C, et al. Bubble alive. In: ACM SIGGRAPH Conference Proceedings, 2008

  32. Takahashi T, Fujii H, Kunimatsu A, et al. Realistic animation of fluid with splash and foam. Comput Graph Forum, 2003, 22(3): 391–400

    Article  Google Scholar 

  33. Desbrun M, Cani M P. Smoothed particles: A new paradigm for animating highly deformable bodies. In: Computer Animation and Simulation 96 (Proceedings of EG Workshop on Animation and Simulation). Berlin: Springer-Verlag, 1996. 67–76

    Google Scholar 

  34. Chentanez N, Feldman B E, Labelle F, et al. Liquid simulation on lattice-based tetrahedral meshes. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurgraphics Association, 2007. 219–228

    Google Scholar 

  35. Klingner B M, Feldman B E, Chentanez N, et al. Fluid animation with dynamic meshes. ACM Trans Graph, 2006, 25(3): 820–825

    Article  Google Scholar 

  36. Batty C, Bertails F, Bridson R. A fast variational framework for accurate solid-fluid coupling. In: ACM SIGGRAPH 2007 Papers. New York: ACM, 2007. 100

    Google Scholar 

  37. Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH 2004 Papers. New York: ACM, 2004. 457–462

    Chapter  Google Scholar 

  38. Irving G, Guendelman E, Losasso F, et al. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans Graph, 2006, 25(3): 805–811

    Article  Google Scholar 

  39. Lenaerts T, Adams B, Dutré P. Porous flow in particle-based fluid simulations. In: Turk G, ed. ACM Transactions on Graphics. New York: ACM, 2008. Article No. 49

    Google Scholar 

  40. Wang H, Mucha P J, Turk G. Water drops on surfaces. In: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005. 921–929

    Chapter  Google Scholar 

  41. Thürey N, Rüde U. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Computing and Visualization in Science. Berlin: Springer, 2008

    Google Scholar 

  42. Harris M J, Baxter WV III, Scheuermann T, et al. Simulation of cloud dynamics on graphics hardware. In: Proceedings of Graphics Hardware, San Diego, 2003. 92–101

  43. Harris M J. Real-time cloud simulation and rendering. PhD thesis of The University of North Carolina at Chapel Hill, 2003

  44. Dobashi Y, Kaneda K, Okita T, et al. Efficient method for realistic animation of clouds. In: Conference Proceedings, Annual Conference Series, 2000. 19–28

  45. Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In: Proc. EUROGRAPHICS 2002 Short Presentation, 2002. 405–410

  46. Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001. 15–22

    Chapter  Google Scholar 

  47. Foster N, Metaxas D. Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1997. 181–188

    Chapter  Google Scholar 

  48. Steinhoff J, Underhill D. Modification of the euler equations for vorticity confinement: Application to the computation of interacting vortex rings. Phys Fluids, 1994, 6(8): 2738–2744

    Article  MATH  Google Scholar 

  49. Nguyen D Q, Fedkiw R, Jensen H W. Physically based modeling and animation of fire. ACM Trans Graph, 2002, 21(3): 721–728

    Article  Google Scholar 

  50. Lamorlette A, Foster N. Structural modeling of flames for a production environment. ACM Trans Graph, 2002, 21(3): 729–735

    Article  Google Scholar 

  51. Neff M, Fiume E. A visual model for blast waves and fracture. In: Proceedings of Graphics Interface 1999, 1999. 193–202

  52. Yngve G D, Obrien J F, Hodgins J K. Animating explosions. In: Proceedings of SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM, 2000. 29–36

  53. Obrien J F, Hodgins J K. Graphical modeling and animation of brittle fracture. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings, Annual Conference Series, ACM, 1999. 137–146

  54. Rasmussen N, Nguyen D Q, Geiger W, et al. Smoke simulation for large scale phenomena. ACM Trans Graph, 2003, 22(3): 703–707

    Article  Google Scholar 

  55. Desbrun M, Cani M-P. Animating soft substances with implicit surfaces. In: Computer Graphics Proceedings, ACM SIGGRAPH, 1995. 287–290

  56. Carlson M, Mucha P J, Van Horn R, et al. Melting and flowing. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York: ACM, 2002. 167–174

    Chapter  Google Scholar 

  57. Clavet S, Beaudoin P, Poulin P. Particle based viscoelastic fluid simulation. In: Proc. Symposium on Computer Animation, 2005. 219–228

  58. Goktekin T G, Bargteil A W, Obrien J F. A method for animating viscoelastic fluids. In: ACM SIGGRAPH 2004 Papers. New York: ACM, 2004. 463–468

    Chapter  Google Scholar 

  59. Bargteil A W, Wojtan C, Hodgins J K, et al. A finite element method for animating large viscoplastic flow. ACM Trans Graph, 2007, 26(3): 16:1–16:8

    Article  Google Scholar 

  60. Wojtan C, Turk G. Fast viscoelastic behavior with thin features. In: Turk G, ed. ACM Transactions on Graphics. New York: ACM, 2008. Article No. 47

    Google Scholar 

  61. Miller G, Pearce A. Globular dynamics: a connected particle system for animating viscous fluids. Comput Graph, 1989, 13: 305–309

    Article  Google Scholar 

  62. Luciani A, Habibi A, Manzotti E. A multiscale physical model of granular materials. In: Graphics Interface, 1995. 136–146

  63. Zhu Y, Bridson R. Animating sand as a fluid. ACM Trans Graph, 2005, 24(3): 965–972

    Article  Google Scholar 

  64. Harlow F H. The particle-in-cell method for numerical solution of problems in fluid dynamics. In: Experimental Arithmetic, High-speed Computations and Mathematics, 1963

  65. Brackbill J U, Ruppel H M. FLIP: a method for adaptively zoned, particle-in-cell calculuations of fluid flows in two dimensions. J Comp Phys, 1986, 65: 314–343

    Article  MATH  MathSciNet  Google Scholar 

  66. Hong J-M, Kim C-H. Discontinuous fluids. ACM Trans Graph, 2005, 24(3): 915–920

    Article  MathSciNet  Google Scholar 

  67. Fedkiw R, Aslam T, Merriman B, et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys, 1999, 152: 457–492

    Article  MATH  MathSciNet  Google Scholar 

  68. Hong J-M, Kim C-H. Animation of bubbles in liquid. Comput Graph Forum, 2003, 22(3): 253–262

    Article  MathSciNet  Google Scholar 

  69. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39: 201–255

    Article  MATH  Google Scholar 

  70. Tryggvason G, Bunner B, Esmaeeli A, et al. A front tracking method for the Computations of multiphase flow. J Comput Phys, 2001, 169: 708–759

    Article  MATH  Google Scholar 

  71. Greenwood S T, House D H. Better with bubbles: enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2004. 287–296

  72. Müller M, Solenthaler B, Keiser R, et al. Particle-based fluidfluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2005. 237–244

  73. Kim T, Carlson M. A simple boiling module. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville: Eurographics Association, 2007. 27–34

    Google Scholar 

  74. Thürey N, Rüde U. Free surface lattice-boltzmann fluid simulations with and without level sets. In: Workshop on Vision, Modeling, and Visualization, 2004

  75. Pohl T, Deserno F, Thürey N, et al. Performance evaluation of parallel large-scale lattice boltzmann applications on three supercomputing architectures. In: Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference. 2004

  76. Kim B, Liu Y, Llamas I, et al. Simulation of bubbles in foam with the volume control method. ACM Trans Graph, 2007, 26(3): 98

    Article  Google Scholar 

  77. Takahashi T, Heihachi U, Kunimatsu A. The simulation of fluid-rigid body interaction. In: Proc. SIGGRAPH Sketches & Applications, 2002

  78. Géenevaux O, Habibi A, Dischler J-M. Simulating fluid-solid interaction. In: Graphics Interface, 2003. 31–38

  79. Carlson M, Mucha P J, Turk G. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph, 2004. 23: 377–384

    Article  Google Scholar 

  80. Guendelman E, Selle A, Losasso F, et al. Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph, 2005, 24(3): 973–981

    Article  Google Scholar 

  81. Peskin C S. The immersed boundary method. Acta Numer, 2002, 11: 479–517

    Article  MATH  MathSciNet  Google Scholar 

  82. Chentanez N, Goktekin T G, Feldman B E, et al. Simultaneous coupling of fluids and deformable bodies. In: ACM-EG Proc. Symposium on Computer Animation, 2006. 83–89

  83. Blinn J F. A generalization of algebraic surface drawing. ACM Trans Graph, 1982, 1(3): 235–256

    Article  Google Scholar 

  84. Adams B, Pauly M, Keiser R, et al. Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007 Papers. New York: ACM, 2007. 48

    Google Scholar 

  85. Müller M, Schirm S, Duthaler S. Screen space meshes. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2007. 9–15

    Google Scholar 

  86. Unverdi S, Tryggvason G. A front tracking method for viscous, incompressible, multifluid flows. J Comput Phys, 1992, 100: 25

    Article  MATH  Google Scholar 

  87. Torres D J, Brackbill J U. The point-set method: fronttracking without connectivity. J Comput Phys, 2000, 165: 620–644

    Article  MATH  Google Scholar 

  88. Lorensen W E, Cline H E. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput Graph, 1987, 21(4): 163–169

    Article  Google Scholar 

  89. Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J Comput Phys, 2002, 180: 427–470

    Article  MATH  Google Scholar 

  90. Kunimatsu A, Watanabe Y, Fujii H, et al. Fast simulation and rendering techniques for fluid objects. Comput Graph Forum, 2001, 20(3): 357–367

    Article  Google Scholar 

  91. Mihalef V, Metaxas D, Sussman M. Textured liquids based on the marker level set. Eurographics 2007, 2007, 26: 3

    Google Scholar 

  92. Bargteil A W, Goktekin T G, Obrien J F, et al. A semi-Lagrangian contouring method for fluid simulation. ACM Trans Graph, 2006, 25(1): 19–38

    Article  Google Scholar 

  93. Foster N, Metaxas D. Controlling fluid animation. In: Proc. of CGI, 1997

  94. Feldman B E, Obrien J F, Arikan O. Animating suspended particle explosions. In: Proceedings of ACM SIGGRAPH 2003, 2003. 708–715

  95. Rasmussen N, Enright D, Nguyen D, et al. Directable photorealistic liquids. In: Proc. of Symposium on Computer Animation, 2004

  96. Treuille A, Mcnamara A, Popovic Z, et al. Keyframe control of smoke simulations. ACM Trans Graph, 2003, 22(3): 716–723

    Article  Google Scholar 

  97. Mcnamara A, Treuille A, Popovic Z, et al. Fluid control using the adjoint method. ACM Trans Graph, 2004, 23(3): 449–456

    Article  Google Scholar 

  98. Fattal R, Lischinski D. Target-driven smoke animation. ACM Trans Graph, 2004, 23(3): 441–448

    Article  Google Scholar 

  99. Pighin F, Cohen J M, Shah M. Modeling and editing flows using advected radial basis functions. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM Press, 2004. 223–232

    Chapter  Google Scholar 

  100. Hong J-M, Kim C-H. Controlling fluid animation with geometric potential: Research articles. Comput Animat Virtual Worlds, 2004, 15(3-4): 147–157

    Article  Google Scholar 

  101. Shi L, Yu Y. Controllable smoke animation with guiding objects. ACM Trans Graph, 2005, 24(1): 140–164

    Article  MathSciNet  Google Scholar 

  102. Shi L, Yu Y. Taming liquids for rapidly changing targets. In: Proc. of Symposium on Computer Animation, 2005

  103. Thürey N, Keiser R, Pauly M, et al. Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2006. 7–12

    Google Scholar 

  104. Feldman B E, Obrien J F, Klingner B M. Animating gases with hybrid meshes. In: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005. 904–909

    Chapter  Google Scholar 

  105. Tan J, Yang X B, Zhao X, et al. Fluid animation with multilayer grids. In: Proc. Symposium on Computer Animation, 2008

  106. Thürey N, Rüde U, Stamminger M. Animation of open water phenomena with coupled shallow water and free surface simulations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2006. 157–164

    Google Scholar 

  107. Kang B, Jang Y, Ihm I. Animation of chemically reactive fluids using a hybrid simulation method. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association, 2007. 199–208

    Google Scholar 

  108. Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke, water and explosions. ACM Trans Graph, 2005. 24(3): 910–914

    Article  Google Scholar 

  109. Losasso F, Talton J, Kwatra N, et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comput Graph, 2008, 14(4): 797–804

    Article  Google Scholar 

  110. Treuille A, Lewis A, Popovic Z. Model reduction for real-time fluids. ACM Trans Graph, 2006, 25(3): 826–834

    Article  Google Scholar 

  111. Gupta M, Narasimhan S G. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2007

  112. Boltz J, Farmer I, Grinspun E, et al. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans Graph, 2003, 22(3): 917–924

    Article  Google Scholar 

  113. Wu E H, Liu Y Q, Liu X H. An improved study of real-time fluid simulation on GPU. J Comput Anim Virt World, 2004, 15(3-4): 139–146

    Article  Google Scholar 

  114. Liu Y Q, Liu X H, Wu E H. Real-time 3D fluid simulation on GPU with complex obstacles. In: Proceedings of Pacific Graphics 2004, Seoul, 2004. 247–256

  115. Tölke J. Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nVIDIA. Computing and Viualization in Science. Berling: Springer, 2008

    Google Scholar 

  116. Crane K, Llamas I, Tariq S. Real-time simulation and rendering of 3D fluids. GPU Gem 3, Chaper 30, Nvidia 2007

  117. Lin N. Special effect with Geforce 8 series hardware. In: Game Developer Conference, Shanghai, 2007

  118. Geiss R. Generating complex procedural terrains using the gpu. GPU Gem 3, Chaper 1, Nvidia 2007

  119. Kim T, Thürey N, James D, et al. Wavelet turbulence for fluid simulation. ACM Trans Graph, 2008, 27(13): 1–6

    Google Scholar 

  120. Schechter H. Bridson R. Evolving sub-grid turbulence for smoke animation. In: Symposium on Computer Animation, 2008

  121. Kim B, Liu Y, Llamas I, et al. FlowFixer: Using BFECC for fluid simulation. In: Eurographics Workshop on Natural Phenomena. 2005

  122. Molemaker J, Cohen M J, Patel S, et al. Low viscosity flow simulations for animation. In: Symposium on Computer Animation, 2008

  123. Song O-Y, Shin H, Ko H-S. Stable but nondissipative water. ACM Trans Graph, 2005, 24(1): 81–97

    Article  Google Scholar 

  124. Thompson, Joe F, Warsi Z V A, et al. Numerical Grid Generation: Foundations and Applications. New York: North-Holland, 1985

    MATH  Google Scholar 

  125. Zhao Q P. A servey on virtual reality. Sci China Ser F-Inf Sci, 2009, 52(3): 348–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuBo Yang.

Additional information

Supported partially by the National Basic Research Program of China (Grant No. 2009CB320804), and the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z307)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Yang, X. Physically-based fluid animation: A survey. Sci. China Ser. F-Inf. Sci. 52, 723–740 (2009). https://doi.org/10.1007/s11432-009-0091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0091-z

Keywords

Navigation