Skip to main content
Log in

Design, modeling, and evaluation of parallel continuum robots: A survey

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Parallel continuum robots (PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure, inherence with compliance, and easiness of realization. Over the past decade, a variety of novel designs have been reported to enrich their diversity. However, there is a lack of systematic review of these emerging robots. To this end, this paper conducts a comprehensive survey on the mechanism design, kinetostatic modeling and analysis, and performance evaluation. For these robots, kinetostatic modeling plays a fundamental role throughout the design, analysis, and control stages. A systematic review of the existing approaches for kinetostatic modeling and analysis is provided, and a comparison is made to distinguish their differences. As well, a classification is made according to the characteristics of structure and actuation. In addition, performance evaluation on the workspace, stability, and singularity is also overviewed. Finally, the scenarios of potential applications are elaborated, and future research prospects are discussed. We believe that the information provided in this paper will be particularly useful for those who are interested in PCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Merlet J P. Parallel Robots. Netherlands: Springer Science & Business Media, 2006

    Google Scholar 

  2. Lou Y J, Liu G F, Xu J J, et al. A general approach for optimal kinematic design of parallel manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, 2004. 3659–3664

  3. Webster Iii R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robot Res, 2010, 29: 1661–1683

    Article  Google Scholar 

  4. Burgner-Kahrs J, Rucker D C, Choset H. Continuum robots for medical applications: A survey. IEEE Trans Robot, 2015, 31: 1261–1280

    Article  Google Scholar 

  5. Zhang J Y, Fang Q, Xiang P Y, et al. A survey on design, actuation, modeling, and control of continuum robot. Cyborg Bionic Syst, 2022, 2022: 9754697

    Article  Google Scholar 

  6. Amanov E, Nguyen T D, Burgner-Kahrs J. Tendon-driven continuum robots with extensible sections—A model-based evaluation of path-following motions. Int J Robot Res, 2021, 40: 7–23

    Article  Google Scholar 

  7. Bryson C, Rucker C. Toward parallel continuum manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation. Hong Kong, 2014. 778–785

  8. Campa F, Diez M, Díaz-Caneja D, et al. A 2 DOF continuum parallel robot for pick & place collaborative tasks. In: Proceedings of IFToMM World Congress on Mechanism and Machine Science. Cham: Springer, 2019. 1979–1988

    Chapter  Google Scholar 

  9. Chen G, Zhang Z, Wang H. A general approach to the large deflection problems of spatial flexible rods using principal axes decomposition of compliance matrices. J Mech Robot, 2018, 10: 031012

    Article  Google Scholar 

  10. Du C C, Chen G L, Zhang Z, et al. Design and experimental analysis of a planar compliant parallel manipulator. In: Proceedings of International Conference on Intelligent Robotics and Applications. Cham: Springer, 2019. 637–647

    Chapter  Google Scholar 

  11. Orekhov A L, Black C B, Till J, et al. Analysis and validation of a teleoperated surgical parallel continuum manipulator. IEEE Robot Autom Lett, 2016, 1: 828–835

    Article  Google Scholar 

  12. Young E M, Kuchenbecker K J. Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues. IEEE Trans Haptics, 2019, 12: 295–306

    Article  PubMed  Google Scholar 

  13. Koehler M, Bieze T M, Kruszewski A, et al. Modeling and control of a 5-DOF parallel continuum haptic device. IEEE Trans Robot, 2023, 39: 3636–3654

    Article  Google Scholar 

  14. Díaz-Caneja D, Campa F J, Altuzarra O. Design and modeling of a parallel continuum manipulator for trunk motion rehabilitation. J Med Devices, 2021, 15: 011109

    Article  Google Scholar 

  15. Yun Y, Li Y. Optimal design of a 3-PUPU parallel robot with compliant hinges for micromanipulation in a cubic workspace. Robot Comput-Integrated Manuf, 2011, 27: 977–985

    Article  Google Scholar 

  16. McClintock H, Temel F Z, Doshi N, et al. The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Sci Robot, 2018, 3: eaar3018

    Article  PubMed  Google Scholar 

  17. Zhang Q, Li C, Zhang J, et al. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space. J Sound Vib, 2017, 411: 1–19

    Article  ADS  Google Scholar 

  18. Ansarieshlaghi F, Eberhard P. Hybrid force/position control of a very flexible parallel robot manipulator in contact with an environment. In: Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics. Prague, 2019. 59–67

  19. Hopkins J B, Rivera J, Kim C, et al. Synthesis and analysis of soft parallel robots comprised of active constraints. J Mech Robot, 2015, 7: 011002

    Article  Google Scholar 

  20. Huang X, Zhu X, Gu G. Kinematic modeling and characterization of soft parallel robots. IEEE Trans Robot, 2022, 38: 3792–3806

    Article  Google Scholar 

  21. Bajo A, Simaan N. Finding lost wrenches: Using continuum robots for contact detection and estimation of contact location. In: Proceedings of IEEE International Conference on Robotics and Automation. Anchorage, 2010. 3666–3673

  22. Xu K, Simaan N. Analytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. J Mech Robot, 2010, 2: 011006

    Article  Google Scholar 

  23. McInroy J E. Modeling and design of flexure jointed Stewart platforms for control purposes. IEEE ASME Trans Mechatron, 2002, 7: 95–99

    Article  Google Scholar 

  24. Hesselbach J, Raatz A, Wrege J, et al. Design and analysis of a macro parallel robot with flexure hinges for micro assembly tasks. In: Proceedings of 35th International Symposium on Robotics (ISR). Paris, 2004. 23–26

  25. Dong W, Sun L N, Du Z J. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens Actuat A-Phys, 2007, 135: 250–256

    Article  CAS  Google Scholar 

  26. Hesselbach J, Raatz A. Compliant parallel robot with 6 DOF. In: Proceedings of SPIE Microrobotics and Microassembly III. Boston, 2001. 143–150

  27. Krut S, Pierrot F. Analysis of a high resolution planar PKM. In: Proceedings of IFToMM World Congress in Mechanism and Machine Science. Besançon, 2007

  28. Yang Z X, Zhu X Y, Xu K. Continuum delta robot: A novel translational parallel robot with continuum joints. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Auckland, 2018. 748–755

  29. Garcia M, Pena P, Tekes A, et al. Development of novel three-dimensional soft parallel robot. In: Proceedings of SoutheastCon. Atlanta, 2021. 1–6

  30. Grace D, Lee-Ortiz J, Garcia M, et al. Development of a novel six dof soft parallel robot. In: Proceedings of SoutheastCon. Mobile, 2022. 81–86

  31. Li B, Zhang X P, Mills J K, et al. Vibration suppression of a 3-prr flexible parallel manipulator using input shaping. In: Proceedings of International Conference on Mechatronics and Automation. Changchun, 2009. 3539–3544

  32. Morlock M, Meyer N, Pick M A, et al. Real-time trajectory tracking control of a parallel robot with flexible links. Mech Mach Theor, 2021, 158: 104220

    Article  Google Scholar 

  33. Sheng L, Li W, Wang Y, et al. Rigid-flexible coupling dynamic model of a flexible planar parallel robot for modal characteristics research. Adv Mech Eng, 2019, 11: 1687814018823469

    Article  Google Scholar 

  34. Duriez C. Control of elastic soft robots based on real-time finite element method. In: Proceedings of IEEE International Conference on Robotics and Automation. Karlsruhe, 2013. 3982–3987

  35. Rivera J A, Kim C J. Spatial parallel soft robotic architectures. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014. 548–553

  36. Lindenroth L, Soor A, Hutchinson J, et al. Design of a soft, parallel end-effector applied to robot-guided ultrasound interventions. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, 2017. 3716–3721

  37. Amiri Moghadam A A, Kouzani A, Torabi K, et al. Development of a novel soft parallel robot equipped with polymeric artificial muscles. Smart Mater Struct, 2015, 24: 035017

    Article  ADS  Google Scholar 

  38. Garcia M, Moghadam A, Tekes A, et al. Development of a 3d printed soft parallel robot. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition. Online, 2020

  39. Simaan N, Xu K, Wei W, et al. Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int J Robot Res, 2009, 28: 1134–1153

    Article  Google Scholar 

  40. Ding J, Goldman R E, Xu K, et al. Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE ASME Trans Mechatron, 2012, 18: 1612–1624

    Article  Google Scholar 

  41. Gosselin C. Cable-driven parallel mechanisms: State of the art and perspectives. Mech Eng Rev, 2014, 1: DSM0004

    Article  Google Scholar 

  42. Qian S, Zi B, Shang W W, et al. A review on cable-driven parallel robots. Chin J Mech Eng, 2018, 31: 66

    Article  Google Scholar 

  43. Li Y, Zi B, Yang Z M, et al. Combined kinematic and static analysis of an articulated lower limb traction device for a rehabilitation robotic system. Sci China Tech Sci, 2021, 64: 1189–1202

    Article  Google Scholar 

  44. Skelton R, Helton J, Adhikari R, et al. An introduction to the mechanics of tensegrity structures, dynamics and control of aerospace systems. San Diego: CRC Press, 2002

    Google Scholar 

  45. Liu Y, Bi Q, Yue X, et al. A review on tensegrity structures-based robots. Mech Mach Theor, 2022, 168: 104571

    Article  Google Scholar 

  46. Zhu Z, Cui H, Pochiraju K. US Patent, 11/909,852

  47. Black C B, Till J, Rucker D C. Parallel continuum robots: Modeling, analysis, and actuation-based force sensing. IEEE Trans Robot, 2018, 34: 29–47

    Article  Google Scholar 

  48. Pan H, Chen G, Kang Y, et al. Design and kinematic analysis of a flexible-link parallel mechanism with a spatially quasi-translational end effector. J Mech Robot, 2021, 13: 011022

    Article  Google Scholar 

  49. Altuzarra O, Caballero D, Campa F, et al. Forward and inverse kinematics in 2-DOF planar parallel continuum manipulators. In: Proceedings of the 7th European Conference on Mechanism Science. Cham: Springer, 2018. 231–238

    Google Scholar 

  50. Lilge S, Nuelle K, Boettcher G, et al. Tendon actuated continuous structures in planar parallel robots: A kinematic analysis. J Mech Robot, 2021, 13: 011025

    Article  Google Scholar 

  51. Orekhov A, Aloi V, Rucker C. Modeling parallel continuum robots with general intermediate constraints. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Singapore, 2017. 6142–6149

  52. Wu G L, Shi G L, Shi Y L. Modeling and analysis of a parallel continuum robot using artificial neural network. In: Proceedings of IEEE International Conference on Mechatronics (ICM). Churchill, 2017. 153–158

  53. Wu G, Shi G. Experimental statics calibration of a multi-constraint parallel continuum robot. Mech Mach Theor, 2019, 136: 72–85

    Article  Google Scholar 

  54. Altuzarra O, Diez M, Corral J, et al. Kinematic analysis of a continuum parallel robot. In: Proceedings of New Trends in Mechanism and Machine Science: Theory and Industrial Applications. Switzerland: Springer, 2017. 173–180

    Chapter  Google Scholar 

  55. Altuzarra O, Urizar M, Cichella M, et al. Kinematic analysis of three degrees of freedom planar parallel continuum mechanisms. Mech Mach Theor, 2023, 185: 105311

    Article  Google Scholar 

  56. Chen G, Zhang Z, Kong L, et al. Analysis and validation of a flexible planar two degrees-of-freedom parallel manipulator with structural passive compliance. J Mech Robot, 2020, 12: 011011

    Article  Google Scholar 

  57. Chen G, Kang Y, Liang Z, et al. Kinetostatics modeling and analysis of parallel continuum manipulators. Mech Mach Theor, 2021, 163: 104380

    Article  Google Scholar 

  58. Kang Y, Liang Z, Yan T, et al. Analysis and validation of a flexible limb/cable hybrid-driven parallel continuum manipulator. J Mech Robot, 2024, 16: 061010

    Article  Google Scholar 

  59. Nuelle K, Sterneck T, Lilge S, et al. Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot. IEEE Robot Autom Lett, 2020, 5: 5811–5818

    Article  Google Scholar 

  60. Boettcher G, Lilge S, Burgner-Kahrs J. Design of a reconfigurable parallel continuum robot with tendon-actuated kinematic chains. IEEE Robot Autom Lett, 2021, 6: 1272–1279

    Article  Google Scholar 

  61. Escande C, Chettibi T, Merzouki R, et al. Kinematic calibration of a multisection bionic manipulator. IEEE ASME Trans Mechatron, 2015, 20: 663–674

    Article  Google Scholar 

  62. Singh I, Singh M, Pathak P M, et al. Optimal work space of parallel continuum manipulator consisting of compact bionic handling arms. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Macao, 2017. 258–263

  63. Wen K, Burgner-Kahrs J. Modeling and analysis of tendon-driven parallel continuum robots under constant curvature and pseudo-rigid-body assumptions. J Mech Robot, 2022, 15: 041003

    Article  Google Scholar 

  64. Kuo C H, Chen Y C, Pan T Y. Continuum kinematics of a planar dual-backbone robot based on pseudo-rigid-body model: Formulation, accuracy, and efficiency. In: Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, 2017

  65. Altuzarra O, Caballero D, Campa F J, et al. Position analysis in planar parallel continuum mechanisms. Mech Mach Theor, 2019, 132: 13–29

    Article  Google Scholar 

  66. Zaccaria F, Briot S, Chikhaoui T, et al. An analytical formulation for the geometrico-static problem of continuum planar parallel robots. In: Proceedings of Symposium on Robot Design, Dynamics and Control. Cham: Springer, 2020. 512–520

    Google Scholar 

  67. Wang W, Xi F, Tian Y, et al. Modeling and analysis of a planar soft panel continuum mechanism. J Mech Robot, 2020, 12: 044503

    Article  Google Scholar 

  68. Shahabi E, Kuo C. Solving inverse kinematics of a planar dual-backbone continuum robot using neural network. In: Proceedings of the 7th European Conference on Mechanism Science. Switzerland: Springer Nature, 2018. 355–361

    Google Scholar 

  69. Yan W, Chen G L, Tang S J, et al. Design of a reconfigurable planar parallel continuum manipulator with variable stiffness. In: Proceedings of International Conference on Intelligent Robotics and Applications. Switzerland: Springer Nature, 2021. 803–813

    Chapter  Google Scholar 

  70. Zaccaria F, Ida E, Briot S, et al. Workspace Computation of Planar Continuum Parallel Robots. IEEE Robot Autom Lett, 2022, 7: 2700–2707

    Article  Google Scholar 

  71. Till J, Rucker D C. Elastic stability of cosserat rods and parallel continuum robots. IEEE Trans Robot, 2017, 33: 718–733

    Article  Google Scholar 

  72. Altuzarra O, Campa F. On singularity and instability in a planar parallel continuum mechanism. In: Proceedings of International Symposium on Advances in Robot Kinematics. Cham: Springer, 2020. 27–334

    Google Scholar 

  73. Briot S, Goldsztejn A. Singularity conditions for continuum parallel robots. IEEE Trans Robot, 2022, 38: 507–525

    Article  Google Scholar 

  74. Aloi V, Black C, Rucker C. Stiffness control of parallel continuum robots. In: Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Atlanta, 2018

  75. Altuzarra O, Caballero D, Zhang Q, et al. Kinematic characteristics of parallel continuum mechanisms. In: Proceedings of International Symposium on Advances in Robot Kinematics. Cham: Springer, 2018. 293–301

    Google Scholar 

  76. Li L, Zhao Y, Tian Y, et al. Shape modeling of a parallel soft panel continuum robot. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur, 2018. 367–372

  77. Mauzé B, Laurent G J, Dahmouche R, et al. Micrometer positioning accuracy with a planar parallel continuum robot. Front Robot AI, 2021, 8: 706070

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gallardo O, Mauzé B, Dahmouche R, et al. Turning an articulated 3-ppsr manipulator into a parallel continuum robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, 2021. 4955–4960

  79. Nwafor C, Laurent G J, Rabenorosoa K. Miniature parallel continuum robot made of glass: Analysis, design, and proof-of-concept. IEEE ASME Trans Mechatron, 2023, 28: 2038–2046

    Article  Google Scholar 

  80. Duan X, Yan W, Chen G, et al. Analysis and validation of a planar parallel continuum manipulator with variable Cartesian stiffness. Mech Mach Theor, 2022, 177: 105030

    Article  Google Scholar 

  81. Li Y, Liu Y, Zhang P, et al. Analytic formulation of kinematics for a planar continuum parallel manipulator with large-deflection links. J Intell Robot Syst, 2023, 107: 58

    Article  Google Scholar 

  82. Ghafoori M, Keymasi Khalaji A. Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory. Robot Autonomous Syst, 2020, 134: 103650

    Article  Google Scholar 

  83. Wu G, Shi G. Design, modeling, and workspace analysis of an extensible rod-driven parallel continuum robot. Mech Mach Theor, 2022, 172: 104798

    Article  Google Scholar 

  84. Pan L, Zhang J W, Zhang D, et al. Modeling and analysis of a novel 3R parallel compliant mechanism. Machines, 2023, 11: 375

    Article  Google Scholar 

  85. Lilge S, Burgner-Kahrs J. Kinetostatic modeling of tendon-driven parallel continuum robots. IEEE Trans Robot, 2022, 39: 1563–1579

    Article  Google Scholar 

  86. Jones B A, Walker I D. Kinematics for multisection continuum robots. IEEE Trans Robot, 2006, 22: 43–55

    Article  Google Scholar 

  87. Rucker D C, Jones B A, Webster III R J. A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans Robot, 2010, 26: 769–780

    Article  PubMed  PubMed Central  Google Scholar 

  88. Howell L L, Midha A. A method for the design of compliant mechanisms with small-length flexural pivots. J Mech Des, 1994, 116: 280–290

    Article  Google Scholar 

  89. Howell L L, Midha A. Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. J Mech Des, 1995, 117: 156–165

    Article  Google Scholar 

  90. Chen G M, Xiong B T, Huang X B. Finding the optimal characteristic parameters for 3R pseudo-rigid-body model using an improved particle swarm optimizer. Precis Eng-J Int Soc Precis Eng Nanotechnol, 2011, 35: 505–511

    Google Scholar 

  91. Saxena A, Kramer S N. A simple and accurate method for determining large deflections in compliant mechanisms subjected to end forces and moments. J Mech Des, 1998, 120: 392–400

    Article  Google Scholar 

  92. Dado M H. Variable parametric pseudo-rigid-body model for large-deflection beams with end loads. Int J Non-Linear Mech, 2001, 36: 1123–1133

    Article  Google Scholar 

  93. Kimball C, Tsai L. Modeling of flexural beams subjected to arbitrary end loads. J Mech Des, 2002, 124: 23–235

    Article  Google Scholar 

  94. Su H J. A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads. J Mech Robot, 2009, 1: 021008

    Article  Google Scholar 

  95. Zhu S K, Yu Y Q. Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms. J Mech Robot, 2017, 9: 031005

    Article  Google Scholar 

  96. Yu Y Q, Zhu S K. 5R pseudo-rigid-body model for inflection beams in compliant mechanisms. Mech Mach Theor, 2017, 116: 501–512

    Article  Google Scholar 

  97. Jin M, Yang Z, Ynchausti C, et al. Large-deflection analysis of general beams in contact-aided compliant mechanisms using chained pseudo-rigid-body model. J Mech Robot, 2020, 12: 031005

    Article  Google Scholar 

  98. Howell L. Compliant Mechanisms. New York: John Wiley & Sons, 2001

    Google Scholar 

  99. Bisshopp K E, Drucker D C. Large deflection of cantilever beams. Quart Appl Math, 1945, 3: 272–275

    Article  MathSciNet  Google Scholar 

  100. Frisch-Fay R. Flexible Bars. London: Butterworths, 1962

    Google Scholar 

  101. Shoup T E. On the use of the nodal elastica for the analysis of flexible link devices. J Eng Ind, 1972, 94: 871–875

    Article  Google Scholar 

  102. Zhang A, Chen G. A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms. J Mech Robot, 2013, 5: 021006

    Article  Google Scholar 

  103. Rubin M B. Cosserat Theories: Shells, Rods and Points. Dordrecht: Springer Science & Business Media, 2000

    Book  Google Scholar 

  104. Murray R, Li Z X, Sastry S. A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 1994

    Google Scholar 

  105. Antman S S. Nonlinear Problems of Elasticity. New York: Springer, 2005

    Google Scholar 

  106. Pai D K. Strands: Interactive simulation of thin solids using cosserat models. In: Proceedings of Computer Graphics Forum. Oxford UK: Blackwell Publishing, 2002. 347–352

    Google Scholar 

  107. Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot, 2008, 24: 773–780

    Article  Google Scholar 

  108. Jones B, Gray R, Turlapati K. Three dimensional statics for continuum robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, 2009. 2659–2664

  109. Chen G, Wang H, Lin Z, et al. The principal axes decomposition of spatial stiffness matrices. IEEE Trans Robot, 2015, 31: 191–207

    Article  CAS  Google Scholar 

  110. Mauze B, Dahmouche R, Laurent G J, et al. Nanometer precision with a planar parallel continuum robot. IEEE Robot Autom Lett, 2020, 5: 3806–3813

    Article  Google Scholar 

  111. Zaccaria F, Idá E, Briot S. A boundary computation algorithm for the workspace evaluation of continuum parallel robots. J Mech Robot, 2024, 16: 041010

    Article  Google Scholar 

  112. McIntyre J, Mussa-Ivaldi F A, Bizzi E. The control of stable postures in the multijoint arm. Exp Brain Res, 1996, 110: 248–264

    Article  CAS  PubMed  Google Scholar 

  113. Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Automat, 1990, 6: 281–290

    Article  Google Scholar 

  114. Liu G, Lou Y, Li Z. Singularities of parallel manipulators: A geometric treatment. IEEE Trans Robot Automat, 2003, 19: 579–594

    Article  Google Scholar 

  115. Merlet J P. Singular configurations. Dordrecht: Springer Netherlands, 2006

    Google Scholar 

  116. Lilge S, Wen K, Burgner-Kahrs J. Singularity analysis of 3-DOF planar parallel continuum robots with constant curvature links. Front Robot AI, 2023, 9: 1082185

    Article  PubMed  PubMed Central  Google Scholar 

  117. Huang T, Li Z, Li M, et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. J Mech Des, 2004, 126: 449–455

    Article  Google Scholar 

  118. Gao F, Peng B, Zhao H, et al. A novel 5-DOF fully parallel kinematic machine tool. Int J Adv Manuf Technol, 2006, 31: 201–207

    Article  Google Scholar 

  119. Wu J, Wang J, Wang L, et al. Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy. Mech Mach Theor, 2009, 44: 835–849

    Article  Google Scholar 

  120. Wu J, Gao Y, Zhang B, et al. Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment. Robot Comput-Integrated Manuf, 2017, 44: 199–207

    Article  Google Scholar 

  121. Wu J, Wang X, Zhang B, et al. Multi-objective optimal design of a novel 6-DOF spray-painting robot. Robotica, 2021, 39: 2268–2282

    Article  Google Scholar 

  122. Dong W, Du Z, Xiao Y, et al. Development of a parallel kinematic motion simulator platform. Mechatronics, 2013, 23: 154–161

    Article  Google Scholar 

  123. Díaz-Caneja D, Campa F, Altuzarra O, et al. A compliant parallel manipulator for trunk rehabilitation after stroke. In: Proceedings of New Trends in Medical and Service Robotics. Cham: Springer, 2021. 37–43

    Chapter  Google Scholar 

  124. Chen S T, Wang Y S, Li D C, et al. Enhancing interaction performance of soft pneumatic-networks grippers by skeleton topology optimization. Sci China Tech Sci, 2021, 64: 2709–2717

    Article  Google Scholar 

  125. Gai L J, Zong X F. A modular four-modal soft grasping device. Sci China Tech Sci, 2022, 65: 1845–1858

    Article  Google Scholar 

  126. Frisoli A, Checcacci D, Salsedo F, et al. Synthesis by screw algebra of translating in-parallel actuated mechanisms. In: Proceedings of Advances in robot kinematics. Dordrecht: Springer, 2000. 433–440

    Chapter  Google Scholar 

  127. Hervé J M. The lie group of rigid body displacements, a fundamental tool for mechanism design. Mecha Mach Theor, 1999, 34: 719–730

    Article  MathSciNet  Google Scholar 

  128. Meng J, Liu G, Li Z. A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators. IEEE Trans Robot, 2007, 23: 625–649

    Article  Google Scholar 

  129. Gravagne I A, Rahn C D, Walker I D. Large deflection dynamics and control for planar continuum robots. IEEE ASME Trans Mechatron, 2003, 8: 299–307

    Article  Google Scholar 

  130. Rucker D C, Webster III R J. Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Trans Robot, 2011, 27: 1033–1044

    Article  Google Scholar 

  131. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  CAS  PubMed  ADS  Google Scholar 

  132. Till J, Aloi V, Rucker C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int J Robot Res, 2019, 38: 723–746

    Article  Google Scholar 

  133. Boyer F, Lebastard V, Candelier F, et al. Dynamics of continuum and soft robots: A strain parameterization based approach. IEEE Trans Robot, 2021, 37: 847–863

    Article  Google Scholar 

  134. Till J, Aloi V, Riojas K E, et al. A dynamic model for concentric tube robots. IEEE Trans Robot, 2020, 36: 1704–1718

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sadati S M H, Naghibi S E, Shiva A, et al. TMTDyn: A Matlab package for modeling and control of hybrid rigid-continuum robots based on discretized lumped systems and reduced-order models. Int J Robot Res, 2021, 40: 296–347

    Article  Google Scholar 

  136. Yang D P, Liu H. Human-machine shared control: New avenue to dexterous prosthetic hand manipulation. Sci China Tech Sci, 2021, 64: 767–773

    Article  Google Scholar 

  137. Yang B, Jiang L, Ge C Y, et al. Control of myoelectric prosthetic hand with a novel proximity-tactile sensor. Sci China Tech Sci, 2022, 65: 1513–1523

    Article  Google Scholar 

  138. Zhang N B, Zhao Y, Gu G Y, et al. Synergistic control of soft robotic hands for human-like grasp postures. Sci China Tech Sci, 2022, 65: 553–568

    Article  CAS  ADS  Google Scholar 

  139. Luo J J, Xun Y H, Yao J, et al. Sensor-based reconstruction of slender flexible beams undergoing large-scale deflection. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, 2022. 6936–6943

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GenLiang Chen.

Additional information

This work was supported by the National Key R & D Program of China (Grant No. 2022YFB4701200), the National Natural Science Foundation of China (NSFC) (Grant Nos. 52022056 and 51875334), and the Innovation Foundation of the Manufacturing Engineering Technology Research Center of Commercial Aircraft Corporation of China (Grant No. COMAC-SFGS-2023-41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Tang, S., Duan, X. et al. Design, modeling, and evaluation of parallel continuum robots: A survey. Sci. China Technol. Sci. 67, 673–695 (2024). https://doi.org/10.1007/s11431-023-2547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2547-4

Navigation