Skip to main content
Log in

Review on research and development of oxy-coal burner for carbon capture

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In the past two decades, the oxy-fuel combustion of pulverized coal has been extensively developed, leading to the completion of several large industrial pilot oxy-fuel plants worldwide. Various types of oxy-fuel burners have been designed and tested in large-scale pilot plants as key components of oxy-fuel combustion. These burners face major challenges in terms of their flame stability because of their decreasing stream momentum ratio and increasing carbon dioxide concentration. However, it offers flexibility in adjusting the oxygen concentration in each burner stream. This study aims to provide a comprehensive review of the state-of-the-art knowledge on oxy-coal burner design and operation in power plants. First, the combustion characteristics under oxy-fuel conditions are briefly introduced. Subsequently, the principal requirements and fundamental parameters of the oxy-coal burners are discussed. The development process of oxy-fuel burners is also presented. Moreover, a compatible design strategy and scaling-up techniques are described for oxy-coal burners developed by the authors over the past ten years. The performances of oxy-coal burners in three large pilot oxy-fuel plants worldwide are summarized and compared. Finally, concluding remarks are provided and potential research needs are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zheng C, Liu Z. Oxy-Fuel Combustion Fundamental Theory and Practices. Cambridge: Elsevier Academic Press, 2017

    Google Scholar 

  2. Stanger R, Wall T, Spörl R, et al. Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Control, 2015, 40: 55–125

    Article  CAS  Google Scholar 

  3. Scheffknecht G, Al-Makhadmeh L, Schnell U, et al. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int J Greenh Gas Control, 2011, 5: S16–S35

    Article  CAS  Google Scholar 

  4. Strömberg L, Lindgren G, Jacoby J, et al. Update on Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe. Energy Procedia, 2009, 1: 581–589

    Article  Google Scholar 

  5. Copin D. The storage dimension of the oxy-combustion based integrated CCS project at Lacq and Rousse. In: 3rd Oxyfuel Combustion Conference. Ponferrada, 2013

  6. Lupion M, Alvarez I, Otero P, et al. 30 MWth CIUDEN oxy-cfb boiler-first experiences. Energy Procedia, 2013, 37: 6179–6188

    Article  CAS  Google Scholar 

  7. Fujimori T, Yamada T. Realization of oxyfuel combustion for near zero emission power generation. Proc Combust Inst, 2013, 34: 2111–2130

    Article  CAS  Google Scholar 

  8. Guo J, Hu F, Jiang X, et al. Experimental and numerical investigations on heat transfer characteristics of a 35 MW oxy-fuel combustion boiler. Energy Procedia, 2017, 114: 481–489

    Article  CAS  Google Scholar 

  9. Guo J, Liu Z, Huang X, et al. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel, 2017, 187: 315–327

    Article  CAS  Google Scholar 

  10. Guo J, Zhang T, Li P, et al. Industrial demonstration progress and trend in pulverized coal oxy-fuel combustion in China (in Chinese). Proc CSEE, 2021, 41: 1197–1208

    CAS  Google Scholar 

  11. Allen G. Coal combustion in advanced burners for minimal emissions and carbon dioxide reduction technologies. European Commission Joule II Clean Coal Technology Programme 1992′1995. Vol II: Powder Coal Combustion Projects. Technical Report. Brussels: European Commission, 1997

    Google Scholar 

  12. Farzan H, MacDonald D K, Varangani R, et al. Evaluation of oxyfuel combustion in a 30 MWj pilot. In: 1st Oxyfuel Combustion Conference (OCC1). Cottbus, 2009

  13. Marcano N, Recourt P, Tsiava R, et al. Oxy-combustion at Lacq CCS pilot plant: Preliminary analysis of burner-boiler performance. In: 2nd Oxyfuel Combustion Conference (OCC2). Yeppoon, 2011

  14. Kluger F, Mönckert P, Bäck A, et al. Oxy-combustion testing in 30 MWth pilot plant schwarze pumpe. In: 2nd Oxyfuel Combustion Conference. Yeppoon, 2011

  15. Marion J, Brautsch A, Kluger F, et al. Alstom’s overview of a manufacturer’s efforts to commercialize oxy-combustion for steam power plants. In: 2nd Oxyfuel Combustion Conference. Queensland, 2011. 12–16

  16. Levasseur A, Turek D, Kenney J, et al. Oxy-fired tangential boiler development and large-scale (15 MWth) validation. In: 2nd Oxyfuel Combustion Conference. Yeppoon, 2011

  17. Rehfeldt S, Kuhr C, Schiffer F P, et al. First test results of Oxyfuel combustion with Hitachi’s DST-burner at Vattenfall’s 30 MWth Pilot Plant at Schwarze Pumpe. Energy Procedia, 2011, 4: 1002–1009

    Article  Google Scholar 

  18. Sturgeon D W, Cameron E D, Fitzgerald F D, et al. Demonstration of the Doosan Power Systems 40MWt OxyCoal™ combustion system. Energy Procedia, 2011, 4: 933–940

    Article  Google Scholar 

  19. Sturgeon D W, Rogerson J W, Hesselmann G J. Doosan power systems oxycoal™ burner technology development. Energy Procedia, 2013, 37: 6481–6488

    Article  CAS  Google Scholar 

  20. Spero C, Yamada T, Nelson P, et al. Callide Oxyfuel Project: Combustion and environmental performance. In: 3rd Oxyfuel Combustion Conference. Ponferrada, 2013

  21. Burchhardt U, Giering R, Weiß G. Overview of burner tests in vattenfall’s oxyfuel pilot plant. In: 3rd Oxyfuel Combustion Conference. Ponferrada, 2013

  22. Chen L, Yong S Z, Ghoniem A F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci, 2012, 38: 156–214

    Article  CAS  Google Scholar 

  23. Yin C, Yan J. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl Energy, 2016, 162: 742–762

    Article  CAS  ADS  Google Scholar 

  24. Khare S P, Wall T F, Farida A Z, et al. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel, 2008, 87: 1042–1049

    Article  CAS  Google Scholar 

  25. Fry A, Adams B, Paschedag A, et al. Principles for retrofitting coal burners for oxy-combustion. Int J Greenh Gas Control, 2011, 5: S151–S158

    Article  CAS  Google Scholar 

  26. Zhang J, Kelly K E, Eddings E G, et al. Ignition in 40 kW co-axial turbulent diffusion oxy-coal jet flames. Proc Combust Inst, 2011, 33: 3375–3382

    Article  CAS  Google Scholar 

  27. Liu J, Liu Z, Chen S, et al. A numerical investigation on flame stability of oxy-coal combustion: Effects of blockage ratio, swirl number, recycle ratio and partial pressure ratio of oxygen. Int J Greenh Gas Control, 2017, 57: 63–72

    Article  CAS  Google Scholar 

  28. Li S, Xu Y, Gao Q. Measurements and modelling of oxy-fuel coal combustion. Proc Combust Inst, 2019, 37: 2643–2661

    Article  CAS  Google Scholar 

  29. Shaddix C R, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst, 2009, 32: 2091–2098

    Article  CAS  Google Scholar 

  30. Molina A, Shaddix C R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst, 2007, 31: 1905–1912

    Article  Google Scholar 

  31. Khatami R, Stivers C, Levendis Y A. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres. Combust Flame, 2012, 159: 3554–3568

    Article  CAS  ADS  Google Scholar 

  32. Riaza J, Khatami R, Levendis Y A, et al. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust Flame, 2014, 161: 1096–1108

    Article  CAS  ADS  Google Scholar 

  33. Molina A, Hecht E S, Shaddix C R. Ignition of a group of coal particles in oxyfuel combustion with CO2 recirculation. In: The 34th International Technical Conference on Coal Utilization and Fuel Systems. Clearwater, 2009

  34. Xu K, Wu Y, Wang Z, et al. Experimental study on ignition behavior of pulverized coal particle clouds in a turbulent jet. Fuel, 2016, 167: 218–225

    Article  CAS  Google Scholar 

  35. Liu Y, Geier M, Molina A, et al. Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions. Int J Greenh Gas Control, 2011, 5: S36–S46

    Article  CAS  Google Scholar 

  36. Ruiz M, Annamalai K, Dahdah T. An experimental study on group ignition of coal particle streams. In: Heat and Mass Transfer in Fires and Combustion Systems, Vol. 148. Dallas, 1990. 19–26

  37. Spalding D B. Combustion and Mass Transfer: A Textbook with Multiple-choice Exercises for Engineering Students. Oxford/New York: Pergamon Press, 1979

    Google Scholar 

  38. Suda T, Masuko K, Sato J, et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion. Fuel, 2007, 86: 2008–2015

    Article  CAS  Google Scholar 

  39. Law C K. Combustion Physics. Cambridge: Cambridge University Press, 2010

    Google Scholar 

  40. Wu X, Zhang X, Yan K, et al. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3 MWth pilot-scale combustion test. Fuel, 2016, 181: 1191–1202

    Article  CAS  Google Scholar 

  41. Guo J, Liu Z, Wang P, et al. Numerical investigation on oxy-combustion characteristics of a 200MWe tangentially fired boiler. Fuel, 2015, 140: 660–668

    Article  CAS  Google Scholar 

  42. Guo J, Liu Z, Hu F, et al. A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler. Appl Energy, 2018, 220: 59–69

    Article  CAS  ADS  Google Scholar 

  43. Hupa M. International flame research foundation. Turku, 2006, www.ffrc.fi/Liekkipaiva_2006/Liekkipaiva2006_IFRF_Today_HUPA.pdf

  44. Feng J, Shen Y, Yang R. Boiler Principle and Calculation (in Chinese). Beijing: Science Press, 2003

    Google Scholar 

  45. He P, Zhao Z, Qin Y. Desin and Operation of Pulverized Coal Burner (in Chinese). Beijing: Machinery Industry Press, 1987

    Google Scholar 

  46. Zhou C, Wang Y, Jin Q, et al. Mechanism analysis on the pulverized coal combustion flame stability and NOx emission in a swirl burner with deep air staging. J Energy Inst, 2019, 92: 298–310

    Article  CAS  Google Scholar 

  47. Zeng L, Li Z, Zhao G, et al. The influence of swirl burner structure on the gas/particle flow characteristics. Energy, 2011, 36: 6184–6194

    Article  CAS  Google Scholar 

  48. Zheng C, Liu Z, Xiang J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology. Engineering, 2015, 1: 139–149

    Article  CAS  Google Scholar 

  49. Luo W, Wang Q, Huang X, et al. Dynamic simulation and transient analysis of a 3 MWth oxy-fuel combustion system. Int J Greenh Gas Control, 2015, 35: 138–149

    Article  Google Scholar 

  50. Adams B R, Fry A R, Senior C L, et al. Characterization of oxy-combustion impacts in existing coal-fired boilers. Technical Report. Salt Lake City, UT: Reaction Engineering International, 2010

    Book  Google Scholar 

  51. Rehfeldt S Schiffer F P, Weckes P et al. Oxyfuel combustion with Hitachi’s DST-burner at Vattenfall’s 30 MWth Pilot Plant at Schwarze Pumpe. In: 2nd Oxyfuel Combustion Conference. Yeppoon, 2011

  52. Payne R, L Chen S, Wolsky A M, et al. CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas. Combust Sci Tech, 1989, 67: 1–16

    Article  CAS  Google Scholar 

  53. Al-Abbas A H, Naser J, Dodds D. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station. Fuel, 2012, 102: 646–665

    Article  CAS  Google Scholar 

  54. Black S, Szuhánszki J, Pranzitelli A, et al. Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling. Fuel, 2013, 113: 780–786

    Article  CAS  Google Scholar 

  55. Habermehl M, Erfurth J, Toporov D, et al. Experimental and numerical investigations on a swirl oxycoal flame. Appl Thermal Eng, 2012, 49: 161–169

    Article  CAS  Google Scholar 

  56. Guo J, Zhang T, Huang X, et al. Oxy-fuel combustion characteristics of pulverized coal in a 3 MW pilot-scale furnace. Energy Fuels, 2018, 32: 10522–10529

    Article  CAS  Google Scholar 

  57. Cabrejos F J, Klinzing G E. Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport. Powder Tech, 1994, 79: 173–186

    Article  CAS  Google Scholar 

  58. Kitto J B, Stultz S C. Steam: Its Generation and Use. 41st ed. Ohio: Babcock & Wilcox Company, 2005

    Google Scholar 

  59. Liu J. A study of numerical optimization design and experiment on oxycoal burner (in Chinese). Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2012

    Google Scholar 

  60. Guo J, Liu Z. Flame characteristics ofoxy-fuel combustion and burner design. In: Zheng C, Liu Z, eds. Oxy-Fuel Combustion Fundamental Theory and Practices. Cambridge: Elsevier Academic Press, 2018. 171–187

    Chapter  Google Scholar 

  61. Woycenko D M, van de Kamp W L, Roberts P A. Combustion of pulverized coal in a mixture of oxygen and recycled flue gas. Technical Report. Ijmuiden: International Flame Research Foundation (IFRF), 1995

    Google Scholar 

  62. Châtel-Pélage F, Marin O, Perrin N, et al. A pilot-scale demonstration of oxy-combustion with flue gas recirculation in a pulverized coal-fired boiler. In: The 28th International Technical Conference on Coal Utilization & Fuel Systems. Clearwater, 2003. 10–13

  63. Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Convers Manage, 1995, 36: 805–808

    Article  CAS  Google Scholar 

  64. Heil P, Toporov D, Stadler H, et al. Development of an oxycoal swirl burner operating at low O2 concentrations. Fuel, 2009, 88: 1269–1274

    Article  CAS  Google Scholar 

  65. Tan Y, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 2006, 85: 507–512

    Article  CAS  Google Scholar 

  66. Spero C, Yamada T. Callide oxyfuel project—Final results. Technical Report. 2018. https://www.globalccsinstitute.com/resources/publications-reports-research/callide-oxyfuel-project-final-results

  67. Grathwohl S, Maier J, Scheffknecht G. Testing and evaluation of advanced oxyfuel burner and firing concepts. In: 2nd Oxyfuel Combustion Conference (OCC2). Yeppoon, 2011

  68. Chui E H, Douglas M A, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel, 2003, 82: 1201–1210

    Article  CAS  Google Scholar 

  69. Chui E H, Majeski A J, Douglas M A, et al. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. Energy, 2004, 29: 1285–1296

    Article  CAS  Google Scholar 

  70. Anheden M, Burchhardt U, Ecke H, et al. Overview of operational experience and results from test activities in Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe. Energy Procedia, 2011, 4: 941–950

    Article  Google Scholar 

  71. Kneer R, Toporov D, Förster M, et al. OXYCOAL-AC: Towards an integrated coal-fired power plant process with ion transportmembrane-based oxygen supply. Energy Environ Sci, 2010, 3: 198–207

    Article  CAS  Google Scholar 

  72. Guo J, Hu F, Jiang X, et al. Effects of gas and particle radiation on IFRF 2.5 MW swirling flame under oxy-fuel combustion. Fuel, 2020, 263: 116634

    Article  CAS  Google Scholar 

  73. Liu J, Chen S, Liu Z, et al. Mathematical modeling of air- and oxy-coal confined swirling flames on two extended eddy-dissipation models. Ind Eng Chem Res, 2012, 51: 691–703

    Article  Google Scholar 

  74. Li P, Wang F, Tu Y, et al. Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace. Energy Fuels, 2014, 28: 1524–1535

    Article  CAS  Google Scholar 

  75. Zhang T, Liu Z, Huang X, et al. Emission of NO and SO2 in a 300 kW pilot scale O2/RFG combustion. In: Qi H, Zhao B (eds). Cleaner Combustion and Sustainable World. ISCC 2011. Heidelberg: Springer, 2013. 1005–1009

    Chapter  Google Scholar 

  76. Luo W, Wang Q, Guo J, et al. Exergy-based control strategy selection for flue gas recycle in oxy-fuel combustion plant. Fuel, 2015, 161: 87–96

    Article  CAS  Google Scholar 

  77. Komaki A, Gotou T, Uchida T, et al. Operation experiences of oxyfuel power plant in callide oxyfuel project. Energy Procedia, 2014, 63: 490–496

    Article  CAS  Google Scholar 

  78. Chen Z, Zhang X, Luo W, et al. Dynamic modeling on the mode switching strategy of a 35 MWth oxy-fuel combustion pilot plant. Energy Fuels, 2019, 34: 2260–2271

    Article  Google Scholar 

  79. Spero C, Montagner F, Chapman L, et al. Callide Oxyfuel Project: Lessons learned. Technical Report. 2014. https://www.globalccsinstitute.com/resources/publications-reports-research/callide-oxyfuel-project-lessons-learned

  80. Normann F, Andersson K, Leckner B, et al. Emission control of nitrogen oxides in the oxy-fuel process. Prog Energy Combust Sci, 2009, 35: 385–397

    Article  CAS  Google Scholar 

  81. Toftegaard M B, Brix J, Jensen P A, et al. Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci, 2010, 36: 581–625

    Article  CAS  Google Scholar 

  82. Park D C, Day S J, Nelson P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proc Combust Inst, 2005, 30: 2169–2175

    Article  Google Scholar 

  83. Okazaki K, Ando T. NOx reduction mechanism in coal combustion with recycled CO2. Energy, 1997, 22: 207–215

    Article  CAS  Google Scholar 

  84. Liu H, Zailani R, Gibbs B. Comparisons of pulverized coal combustion in air and in mixtures of O/CO. Fuel, 2005, 84: 833–840

    Article  CAS  Google Scholar 

  85. Li P, Li W, Wang K, et al. Experiments and kinetic modeling of NO reburning by CH4 under high CO2 concentration in a jet-stirred reactor. Fuel, 2020, 270: 117476

    Article  CAS  Google Scholar 

  86. Guo T, Guo J, Zhang T, et al. Numerical study of NOx formation characteristics on the 35 MW staged oxy-coal combustion. SSRN J, 2021, doi: https://doi.org/10.2139/ssrn.3813149

  87. Andersson K, Normann F, Johnsson F, et al. NO emission during oxyfuel combustion of lignite. Ind Eng Chem Res, 2008, 47: 1835–1845

    Article  CAS  Google Scholar 

  88. Toporov D, Bocian P, Heil P, et al. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust Flame, 2008, 155: 605–618

    Article  CAS  ADS  Google Scholar 

  89. Croiset E, Thambimuthu K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel, 2001, 80: 2117–2121

    Article  CAS  Google Scholar 

  90. Nozaki T, Takano S, Kiga T, et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy, 1997, 22: 199–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoHui Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51906075), Key Research and Development Program of Department of Science and Technology of Jiangxi Province (Grant No. 20223BBG74009), and Science and Technology Innovation Project for Carbon Peak and Carbon Neutrality of Jiangxi Carbon Neutralization Research Center (Grant No. 2022JXST01). The authors thank their colleagues at the Institute of Carbon Capture Utilization and Storage (ICCUS) at Huazhong University of Science and Technology (HUST). JG acknowledges King Abdullah University of Science and Technology (KAUST).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Liu, J., Zhang, T. et al. Review on research and development of oxy-coal burner for carbon capture. Sci. China Technol. Sci. 67, 647–672 (2024). https://doi.org/10.1007/s11431-023-2536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2536-9

Navigation