Skip to main content
Log in

A novel approach towards the selection of regenerators for optimal Stirling engine performance based on energy and exergy analyses

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Regenerators play a vital role in enhancing the overall performance of Stirling engines. Hence, this paper performed an energy and exergy analysis to elucidate the significance of regenerator characteristics concerning system performance, contributing to the optimal regenerator’s design and selection. The relationship between regenerator structure, regenerator exergy destruction, and output power, thermal efficiency, and exergy efficiency for Stirling engines was established by integrating the thermal model of Stirling engines with a mathematical model of regenerators. In contrast to cross-flow and parallel-flow regenerators, a novel concept of inclined-flow regenerators, featuring a matrix surface inclined in the direction of gas flow, was developed to achieve higher and more balanced engine output power and energy utilization efficiency. A comprehensive investigation was conducted into the effects of matrix structure types and regenerator geometries on the performance of both regenerators and engines. The results reveal that, following structural optimization, Stirling engines equipped with the inclined-flow regenerator demonstrate a substantial 16.6%, 38.3%, and 37.2% increase in power output, thermal efficiency, and exergy efficiency, respectively, compared to those equipped with cross-flow regenerators. In contrast, when compared to engines fitted with parallel-flow regenerators, they experience a 13.5% reduction in power output but achieve remarkable enhancements of 45.4% and 36.7% in thermal and exergy efficiency, respectively. This study introduces new insights into selecting regenerator structures for enhancing the output performance of Stirling engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu Y, Xiao L Y, Wang H F, et al. Analysis on the hourly spatio-temporal complementarities between China’s solar and wind energy resources spreading in a wide area. Sci China Tech Sci, 2013, 56: 683–692

    Article  Google Scholar 

  2. Wu H F, Zhang B W, Qu W J, et al. Integration of a thermochemical energy system driven by solar energy and biomass for natural gas and power production. Sci China Tech Sci, 2022, 65: 1383–1395

    Article  Google Scholar 

  3. Wang K, Sanders S R, Dubey S, et al. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renew Sustain Energy Rev, 2016, 62: 89–108

    Article  Google Scholar 

  4. Zhou B, Cheng X T, Liang X G. Power output analyses and optimizations of the Stirling cycle. Sci China Tech Sci, 2013, 56: 228–236

    Article  Google Scholar 

  5. Chen W L, Wong K L, Chang Y F. A numerical study on the effects of moving regenerator to the performance of a β-type Stirling engine. Int J Heat Mass Transfer, 2015, 83: 499–508

    Article  Google Scholar 

  6. Liu M, Zhang B, Han D, et al. Experimental study on regenerative effectiveness and flow characteristics of parallel-plate regenerator in Stirling engine. Appl Thermal Eng, 2022, 217: 119139

    Article  Google Scholar 

  7. Costa S C, Barreno I, Tutar M, et al. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator. Energy Convers Manage, 2015, 89: 473–483

    Article  Google Scholar 

  8. Srinivasan K V, Manimaran A, Arulprakasajothi M, et al. Design and development of porous regenerator for Stirling cryocooler using additive manufacturing. Thermal Sci Eng Prog, 2019, 11: 195–203

    Article  Google Scholar 

  9. Alfarawi S, AL-Dadah R, Mahmoud S. Transient investigation of mini-channel regenerative heat exchangers: Combined experimental and CFD approach. Appl Thermal Eng, 2017, 125: 346–358

    Article  Google Scholar 

  10. Kato Y. Indicated diagrams of low temperature differential Stirling engines with channel-shaped heat exchangers. Renew Energy, 2017, 103: 30–37

    Article  Google Scholar 

  11. Chen W L, Wong K L, Chen H E. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine. Energy Convers Manage, 2014, 77: 118–128

    Article  Google Scholar 

  12. Gedeon D, Wood J G. Oscillating-flow regenerator test rig: Hardware and theory with derived correlations for screens and felts. NASA CR-198442, 1996. 6–13

  13. de Monte F, Rosa P. Linear analysis of rapidly switched heat regenerators in counterflow. Int J Heat Mass Transfer, 2008, 51: 3642–3655

    Article  Google Scholar 

  14. Costa S C, Barrutia H, Esnaola J A, et al. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator. Energy Convers Manage, 2014, 79: 255–264

    Article  Google Scholar 

  15. Yu Z, Mao X, Jaworski A J. Experimental study of heat transfer in oscillatory gas flow inside a parallel-plate channel with imposed axial temperature gradient. Int J Heat Mass Transfer, 2014, 77: 1023–1032

    Article  Google Scholar 

  16. Costa S C, Barrutia H, Esnaola J A, et al. Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator. Energy Convers Manage, 2013, 67: 57–65

    Article  Google Scholar 

  17. Ni M, Peng H, Sultan U, et al. A quantitative method to describe the flow characteristics of an oscillating flow including porous media. Int J Heat Mass Transfer, 2018, 119: 860–866

    Article  Google Scholar 

  18. Xiao G, Peng H, Fan H, et al. Characteristics of steady and oscillating flows through regenerator. Int J Heat Mass Transfer, 2017, 108: 309–321

    Article  Google Scholar 

  19. Yanaga K, Li R, Qiu S. Robust foil regenerator flow loss and heat transfer tests under oscillating flow condition. Appl Thermal Eng, 2020, 178: 115525

    Article  Google Scholar 

  20. Gheith R, Aloui F, Ben Nasrallah S. Study of temperature distribution in a Stirling engine regenerator. Energy Convers Manage, 2014, 88: 962–972

    Article  Google Scholar 

  21. Kato Y, Baba K. Empirical estimation of regenerator efficiency for a low temperature differential Stirling engine. Renew Energy, 2014, 62: 285–292

    Article  Google Scholar 

  22. Dai D D, Yuan F, Long R, et al. Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator. Energy Convers Manage, 2018, 158: 60–69

    Article  Google Scholar 

  23. Ahmadi M H, Mohammadi A H, Dehghani S, et al. Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy Convers Manage, 2013, 75: 438–445

    Article  Google Scholar 

  24. Chahartaghi M, Sheykhi M. Energy and exergy analyses of beta-type Stirling engine at different working conditions. Energy Convers Manage, 2018, 169: 279–290

    Article  Google Scholar 

  25. Li R, Grosu L, Queiros-Condé D. Losses effect on the performance of a Gamma type Stirling engine. Energy Convers Manage, 2016, 114: 28–37

    Article  Google Scholar 

  26. Cheng C H, Yang H S, Keong L. Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy, 2013, 59: 590–599

    Article  Google Scholar 

  27. Nielsen A S, York B T, MacDonald B D. Stirling engine regenerators: How to attain over 95% regenerator effectiveness with subregenerators and thermal mass ratios. Appl Energy, 2019, 253: 113557

    Article  Google Scholar 

  28. Ahmadi M H, Hosseinzade H, Sayyaadi H, et al. Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss. Renew Energy, 2013, 60: 313–322

    Article  Google Scholar 

  29. Cheng C H, Yu Y J. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism. Renew Energy, 2010, 35: 2590–2601

    Article  Google Scholar 

  30. Kato Y, Saitoh S, Ishimatsu K, et al. Effect of geometry and speed on the temperatures estimated by CFD for an isothermal model of a gamma configuration low temperature differential Stirling engine with flat-shaped heat exchangers. Appl Thermal Eng, 2017, 115: 111–122

    Article  Google Scholar 

  31. Gheith R, Aloui F, Ben Nasrallah S. Determination of adequate regenerator for a Gamma-type Stirling engine. Appl Energy, 2015, 139: 272–280

    Article  Google Scholar 

  32. Kongtragool B, Wongwises S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew Sustain Energy Rev, 2003, 7: 131–154

    Article  Google Scholar 

  33. Kongtragool B, Wongwises S. Investigation on power output of the gamma-configuration low temperature differential Stirling engines. Renew Energy, 2005, 30: 465–476

    Article  Google Scholar 

  34. Ahmadi M H, Ahmadi M A, Pourfayaz F, et al. Optimization of powered Stirling heat engine with finite speed thermodynamics. Energy Convers Manage, 2016, 108: 96–105

    Article  Google Scholar 

  35. Dai D, Liu Z, Yuan F, et al. Finite time thermodynamic analysis of a solar duplex Stirling refrigerator. Appl Thermal Eng, 2019, 156: 597–605

    Article  Google Scholar 

  36. Urieli I, Berchowitz D M. Stirling Cycle Engine Analysis. Bristol: Adam Hilger Ltd., 1984

    Google Scholar 

  37. Babaelahi M, Sayyaadi H. Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines. Energy, 2014, 69: 873–890

    Article  Google Scholar 

  38. Ni M, Shi B, Xiao G, et al. Improved simple analytical model and experimental study of a 100 W β-type Stirling engine. Appl Energy, 2016, 169: 768–787

    Article  Google Scholar 

  39. Babaelahi M, Sayyaadi H. A new thermal model based on polytropic numerical simulation of Stirling engines. Appl Energy, 2015, 141: 143–159

    Article  Google Scholar 

  40. Li R, Grosu L, Li W. New polytropic model to predict the performance of beta and gamma type Stirling engine. Energy, 2017, 128: 62–76

    Article  Google Scholar 

  41. Babaelahi M, Sayyaadi H. Modified PSVL: A second order model for thermal simulation of Stirling engines based on convective-polytropic heat transfer of working spaces. Appl Thermal Eng, 2015, 85: 340–355

    Article  Google Scholar 

  42. Wang K, Dubey S, Choo F H, et al. A transient one-dimensional numerical model for kinetic Stirling engine. Appl Energy, 2016, 183: 775–790

    Article  Google Scholar 

  43. Qiu H, Wang K, Yu P, et al. A third-order numerical model and transient characterization of a β-type Stirling engine. Energy, 2021, 222: 119973

    Article  Google Scholar 

  44. de la Bat B J G, Harms T M, Dobson R T, et al. Derivation and numerical case study of a one-dimensional, compressible-flow model of a novel free-piston Stirling engine. Energy, 2020, 199: 117404

    Article  Google Scholar 

  45. Alfarawi S, AL-Dadah R, Mahmoud S. Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation. Energy Convers Manage, 2016, 124: 130–140

    Article  Google Scholar 

  46. Abuelyamen A, Ben-Mansour R, Abualhamayel H, et al. Parametric study on beta-type Stirling engine. Energy Convers Manage, 2017, 145: 53–63

    Article  Google Scholar 

  47. Chen W L, Yang Y C, Salazar J L. A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine. Energy Convers Manage, 2015, 106: 635–643

    Article  Google Scholar 

  48. Xiao G, Sultan U, Ni M, et al. Design optimization with computational fluid dynamic analysis of β-type Stirling engine. Appl Thermal Eng, 2017, 113: 87–102

    Article  Google Scholar 

  49. Zare S, Tavakolpour-saleh A R, Aghahosseini A, et al. Design and optimization of Stirling engines using soft computing methods: A review. Appl Energy, 2021, 283: 116258

    Article  Google Scholar 

  50. Xu H J, Xing Z B, Wang F Q, et al. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem Eng Sci, 2019, 195: 462–483

    Article  Google Scholar 

  51. Trevizoli P V, Barbosa Jr. J R. Entropy generation minimization analysis of oscillating-flow regenerators. Int J Heat Mass Transfer, 2015, 87: 347–358

    Article  Google Scholar 

  52. Tanaka M, Yamashita I, Chisaka F. Flow and heat transfer characteristics of the stirling engine regenerator in an oscillating flow. JSME Int J, 1990, 33: 283–289

    Google Scholar 

  53. Alfarawi S, AL-Dadah R, Mahmoud S. Potentiality ofnew miniature-channels Stirling regenerator. Energy Convers Manage, 2017, 133: 264–274

    Article  Google Scholar 

  54. Yu M, Xin F, Lai X, et al. Study of oscillating flows through a novel constructal bifurcation Stirling regenerator. Appl Thermal Eng, 2021, 184: 116413

    Article  Google Scholar 

  55. Wang J B, Liu Z C, Liu W. Evaluation of convective heat transfer in a tube based on local exergy destruction rate. Sci China Tech Sci, 2016, 59: 1494–1506

    Article  Google Scholar 

  56. Zhang X R, Li X J. Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy. Sci China Tech Sci, 2012, 55: 1427–1436

    Article  Google Scholar 

  57. Li P L, Chen L G, Xia S J, et al. Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation. Sci China Tech Sci, 2022, 65: 657–678

    Article  Google Scholar 

  58. Hosseinzade H, Sayyaadi H. CAFS: The combined adiabatic-finite speed thermal model for simulation and optimization of Stirling engines. Energy Convers Manage, 2015, 91: 32–53

    Article  Google Scholar 

  59. Hosseinzade H, Sayyaadi H, Babaelahi M. A new closed-form analytical thermal model for simulating Stirling engines based on polytropic-finite speed thermodynamics. Energy Convers Manage, 2015, 90: 395–408

    Article  Google Scholar 

  60. Martini W R. Stirling engine design manual. Technical Report. Richland: Martini Engineering, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51736004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Zhang, M., Xu, L. et al. A novel approach towards the selection of regenerators for optimal Stirling engine performance based on energy and exergy analyses. Sci. China Technol. Sci. 67, 295–310 (2024). https://doi.org/10.1007/s11431-023-2529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2529-3

Navigation