Skip to main content
Log in

Injectable chitosan hydrogels loaded with antioxidant agent as first-aid dressings for second-degree burn wounds

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Burn wounds are destructive skin traumas typically of irregular shape and large area. Prone to infection, they require frequent dressing replacement, and painless removal of dressings from burn wounds remains a major challenge. This study focuses on the dynamic characteristics and treatment difficulty of burn wounds. Hydrogel dressings based on glycol chitosan and propionaldehyde- or benzaldehyde-terminated 4-arm poly(ethylene glycol) were designed on the basis of Schiff base cross-linking networks. The hydrogels exhibited shape-adaptability, self-healing and fast-degradation properties, which makes these hydrogels suitable for burn wounds. Salvianolic acid B (SaB)-loaded hydrogel exhibited good antioxidant properties in vitro. In a rat model of deep second-degree burn wounds, the SaB-loaded hydrogel could quickly reduce wound temperature, regulate wound oxidant microenvironment, promote angiogenesis, and accelerate wound healing. Thus, the drug-loaded hydrogel shows significant potential as a first-aid dressing for treatment of burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yu Q, Sun H, Yue Z, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing. Adv Healthcare Mater, 2023, 12: e2202309

    Article  Google Scholar 

  2. Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces, 2020, 12: 10156–10169

    Article  CAS  PubMed  Google Scholar 

  3. Xu H L, Chen P P, ZhuGe D L, et al. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv Healthcare Mater, 2017, 6: 1700344

    Article  Google Scholar 

  4. Huangfu Y, Li S, Deng L, et al. Skin-adaptable, long-lasting moisture, and temperature-tolerant hydrogel dressings for accelerating burn wound healing without secondary damage. ACS Appl Mater Interfaces, 2021, 13: 59695–59707

    Article  CAS  PubMed  Google Scholar 

  5. Shu W, Wang Y, Zhang X, et al. Functional hydrogel dressings for treatment of burn wounds. Front Bioeng Biotechnol, 2021, 9: 788461

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rowan M P, Cancio L C, Elster E A, et al. Burn wound healing and treatment: Review and advancements. Crit Care, 2015, 19: 243

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang H, Wan H K, Hu X Y, et al. Antimicrobial-free knitted fabric as wound dressing and the mechanism of promoting infected wound healing. Sci China Tech Sci, 2023, 66: 2147–2154

    Article  CAS  Google Scholar 

  8. Stoica A E, Chircov C, Grumezescu A M. Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. Materials, 2020, 13: 2853

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Yao Y, Zhang A, Yuan C, et al. Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomater Sci, 2021, 9: 4523–4540

    Article  CAS  PubMed  Google Scholar 

  10. Shi J, Wang D, Wang H, et al. An injectable hemostatic PEG-based hydrogel with on-demand dissolution features for emergency care. Acta Biomater, 2022, 145: 106–121

    Article  CAS  PubMed  Google Scholar 

  11. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15: 12687–12722

    Article  CAS  PubMed  Google Scholar 

  12. Teng L, Shao Z W, He Y S, et al. A glycosylated and catechol-crosslinked ε-polylysine hydrogel: Simple preparation and excellent wound hemostasis and healing properties. Chin J Polym Sci, 2022, 40: 1110–1119

    Article  CAS  Google Scholar 

  13. Zhang Y H, Cui C Y, Sun Y G, et al. A hyperbranched polymer-based water-resistant adhesive: Durable underwater adhesion and primer for anchoring anti-fouling hydrogel coating. Sci China Tech Sci, 2022, 65: 201–213

    Article  CAS  Google Scholar 

  14. Xiao M, Yao Y, Liu W G. Durable and stretchable nanocomposite ionogels with high thermoelectric property for low-grade heat harvesting. Sci China Tech Sci, 2023, 66: 267–280

    Article  CAS  Google Scholar 

  15. Jandera V, Hudson D A, de Wet P M, et al. Cooling the burn wound: Evaluation of different modalites. Burns, 2000, 26: 265–270

    Article  CAS  PubMed  Google Scholar 

  16. Zheng W, Wang L, Jiao H, et al. A cost-effective, fast cooling, and efficient anti-inflammatory multilayered topological hydrogel patch for burn wound first aid. Chem Eng J, 2023, 455: 140553

    Article  CAS  Google Scholar 

  17. Cook K A, Martinez-Lozano E, Sheridan R, et al. Hydrogels for the management of second-degree burns: Currently available options and future promise. Burns Trauma, 2022, 10: tkac047

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chouhan D, Lohe T U, Samudrala P K, et al. In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthcare Mater, 2018, 7: e1801092

    Article  Google Scholar 

  19. Madaghiele M, Sannino A, Ambrosio L, et al. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burn Trauma, 2014, 2: 153–161

    Article  Google Scholar 

  20. Cao L, Cao B, Lu C, et al. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B, 2015, 3: 1268–1280

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces, 2018, 10: 25194–25202

    Article  CAS  PubMed  Google Scholar 

  22. Konieczynska M D, Villa-Camacho J C, Ghobril C, et al. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew Chem Int Ed, 2016, 55: 9984–9987

    Article  CAS  Google Scholar 

  23. Ma X, Bian Q, Hu J, et al. Stem from nature: Bioinspired adhesive formulations for wound healing. J Control Release, 2022, 345: 292–305

    Article  CAS  PubMed  Google Scholar 

  24. Xu Q, Guo L, A S, et al. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes. Chem Sci, 2018, 9: 2179–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi S, Wang J Y, Wang T R, et al. Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials. Sci China Tech Sci, 2021, 64: 641–650

    Article  CAS  ADS  Google Scholar 

  26. Xu Z, Han S, Gu Z, et al. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthcare Mater, 2020, 9: e1901502

    Article  Google Scholar 

  27. Sun X, Jia P, Zhang H, et al. Green regenerative hydrogel wound dressing functionalized by natural drug-food homologous small molecule self-assembled nanospheres. Adv Funct Mater, 2021, 32: 2106572

    Article  Google Scholar 

  28. Chen R, Zhu C, Xu L, et al. An injectable peptide hydrogel with excellent self-healing ability to continuously release salvianolic acid B for myocardial infarction. Biomaterials, 2021, 274: 120855

    Article  CAS  PubMed  Google Scholar 

  29. Zhao G R, Zhang H M, Ye T X, et al. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol, 2008, 46: 73–81

    Article  CAS  PubMed  Google Scholar 

  30. Szwedowicz U, Szewczyk A, Gołąb K, et al. Evaluation of wound healing activity of salvianolic acid B on in vitro experimental model. Int J Mol Sci, 2021, 22: 7728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin S, Cui L, Chen G, et al. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials, 2019, 196: 109–121

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, He C, Rong Y, et al. A fast and versatile cross-linking strategy via o-phthalaldehyde condensation for mechanically strengthened and functional hydrogels. Natl Sci Rev, 2021, 8: nwaa128

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Jia P, Zhe T, et al. Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocolloids, 2019, 96: 402–411

    Article  CAS  Google Scholar 

  34. Wu T, Cui C, Fan C, et al. Tea eggs-inspired high-strength natural polymer hydrogels. Bioactive Mater, 2021, 6: 2820–2828

    Article  CAS  Google Scholar 

  35. Zhao X, Liang Y, Guo B, et al. Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration. Chem Eng J, 2021, 403: 126329

    Article  CAS  Google Scholar 

  36. Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185–199

    Article  CAS  PubMed  Google Scholar 

  37. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater, 2021, 31: 2100848

    Article  CAS  Google Scholar 

  38. Wang F, Chen C, Wang J, et al. Facile preparation of PHEMA hydrogel induced via tannic acid-ferric ions for wearable strain sensing. Colloids Surfs A-Physicochem Eng Aspects, 2023, 658: 130591

    Article  CAS  Google Scholar 

  39. Khadem E, Kharaziha M, Salehi S. Colorimetric pH-responsive and hemostatic hydrogel-based bioadhesives containing functionalized silver nanoparticles. Mater Today Bio, 2023, 20: 100650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu J, Feng E, Song J. Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range. J Am Chem Soc, 2014, 136: 4105–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Heilshorn S C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater, 2015, 27: 3717–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Z, He C, Chen X. Injectable click polypeptide hydrogels via tetrazine-norbornene chemistry for localized cisplatin release. Polymers, 2020, 12: 884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren K, He C, Xiao C, et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials, 2015, 51: 238–249

    Article  CAS  PubMed  Google Scholar 

  44. Rong Y, Zhang Z, He C L, et al. Matrix metalloproteinase-sensitive poly(ethylene glycol) peptide hydrogels as an interactive platform conducive to cell proliferation during 3D cell culture. Sci China Tech, 2021, 64: 1285–1294

    Article  CAS  Google Scholar 

  45. Ren K, Cui H, Xu Q, et al. Injectable polypeptide hydrogels with tunable microenvironment for 3D spreading and chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells. Biomacromolecules, 2016, 17: 3862–3871

    Article  CAS  PubMed  Google Scholar 

  46. Taylor D L, in het Panhuis M. Self-healing hydrogels. Adv Mater, 2016, 28: 9060–9093

    Article  CAS  PubMed  Google Scholar 

  47. Liang Y, Li M, Yang Y, et al. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano, 2022, 16: 3194–3207

    Article  CAS  PubMed  Google Scholar 

  48. Ding X, Li G, Zhang P, et al. Injectable self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds. Adv Funct Mater, 2021, 31: 2011230

    Article  CAS  Google Scholar 

  49. Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: Shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials, 2021, 276: 120838

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Liang Y, He J, et al. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater, 2020, 32: 9937–9953

    Article  CAS  Google Scholar 

  51. Koo M A, Hee Hong S, Hee Lee M, et al. Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing. Acta Biomater, 2019, 95: 418–426

    Article  CAS  PubMed  Google Scholar 

  52. Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem Int Ed, 2011, 50: 586–621

    Article  CAS  Google Scholar 

  53. Priyadarsini K I, Maity D K, Naik G H, et al. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biol Med, 2003, 35: 475–484

    Article  CAS  Google Scholar 

  54. Zou Y, Jin X, Zhang X P, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene. Sci China Tech, 2021, 64: 2744–2754

    Article  CAS  Google Scholar 

  55. Shoba E, Lakra R, Syamala Kiran M, et al. Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed Mater, 2017, 12: 035005

    Article  PubMed  ADS  Google Scholar 

  56. Xu X, Mao C, Zhang C, et al. Salvianolic acid B inhibits ferroptosis and apoptosis during myocardial ischemia/reperfusion injury via decreasing the ubiquitin-proteasome degradation of GPX4 and the ROS-JNK/MAPK pathways. Molecules, 2023, 28: 4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhang or ChaoLiang He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52173147, 22105198, 51973218, 51833010), and the Scientific and Technological Development Projects of Jilin Province (Grant No. 20210204136YY).

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Zhang, Z., Lu, K. et al. Injectable chitosan hydrogels loaded with antioxidant agent as first-aid dressings for second-degree burn wounds. Sci. China Technol. Sci. 67, 891–901 (2024). https://doi.org/10.1007/s11431-023-2509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2509-4

Navigation