Skip to main content
Log in

Large area crystalline Weyl semimetal with nano Au film based micro-fold line array for THz detector

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The advancement of 6G technology relies on the development of high-performance terahertz detectors that can operate at room temperature. These detectors are crucial for Internet of Things (IoT) applications, which require sensitive environmental sensing and efficient reception of 6G signals. One significant research focus is on detection technology with high responsiveness and low equivalent noise power for 6G signals, which experience high losses in the air. To meet the demand for ultra-sensitive detectors in 6G technology, we have employed several techniques. Firstly, we prepared a large area of Weyl-semimetal layer through magnetron sputtering. Secondly, we obtained a high-quality Weyl-semimetal active layer by carefully controlling the annealing conditions. Next, a thin nano-Au layer was introduced as a micro-cavity reflection layer to enhance the device’s detection rate. Additionally, we incorporated an electromagnetic induction well to improve carrier confinement and enhance the detection sensitivity. This proposed high-performance terahertz detector, with its potential for industrial production, offers a valuable technical solution for the advancement of 6G technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi F, Li W J, Yu P, et al. Deep learning based BackCom multiple beamforming for 6G UAV IoT networks. Eurasip J Wirel Comm, 2021, 50

  2. Liao S, Wu J, Li J, et al. Information-centric massive IoT-based ubiquitous connected VR/AR in 6G: A proposed caching consensus approach. IEEE Internet Things J, 2021, 8: 5172–5184

    Article  Google Scholar 

  3. Gupta R, Reebadiya D, Tanwar S. 6G-enabled edge intelligence for ultra-reliable low latency applications: Vision and mission. Comput Standards Interfaces, 2021, 77: 103521

    Article  Google Scholar 

  4. Qi W, Li Q, Song Q, et al. Extensive edge intelligence for future vehicular networks in 6G. IEEE Wireless Commun, 2021, 28: 128–135

    Article  Google Scholar 

  5. Guo H, Zhou X, Liu J, et al. Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Commun, 2022, 33: 100399

    Article  Google Scholar 

  6. Talwar S, Himayat N, Nikopour H, et al. 6G: Connectivity in the era of distributed intelligence. IEEE Commun Mag, 2021, 59: 45–50

    Article  Google Scholar 

  7. Huang X, Zhang K, Wu F, et al. Collaborative machine learning for energy-efficient edge networks in 6G. IEEE Network, 2021, 35: 12–19

    Article  Google Scholar 

  8. Liu D F, Liang A J, Liu E K, et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science, 2019, 365: 1282–1285

    Article  Google Scholar 

  9. Rees D, Manna K, Lu B, et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci Adv, 2020, 6: eaba0509

    Article  Google Scholar 

  10. Morali N, Batabyal R, Nag P K, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science, 2019, 365: 1286–1291

    Article  Google Scholar 

  11. Wang Z Y, Cheng X C, Wang B Z, et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling. Science, 2021, 372: 271–276

    Article  Google Scholar 

  12. Sie E J, Nyby C M, Pemmaraju C D, et al. An ultrafast symmetry switch in a Weyl semimetal. Nature, 2019, 565: 61–66

    Article  Google Scholar 

  13. He H, Qiu C, Ye L, et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560: 61–64

    Article  Google Scholar 

  14. Wang Z, Wieder B J, Li J, et al. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X=Mo, W). Phys Rev Lett, 2019, 123: 186401

    Article  Google Scholar 

  15. Sadowski J, Domagała J Z, Zajkowska W, et al. Structural properties of TaAs Weyl semimetal thin films grown by molecular beam epitaxy on GaAs(001) substrates. Cryst Growth Des, 2022, 22: 6039–6045

    Article  Google Scholar 

  16. Wang Y, Wang Q, Wang Q, et al. Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures. Opt Express, 2021, 29: 8087–8097

    Article  Google Scholar 

  17. Zhong M. Simulation and fabrication of a single-band tunable absorber in 20–50 THz range based on cross array metamaterials. Infrared Phys Tech, 2020, 107: 103322

    Article  Google Scholar 

  18. Zhong M, Jiang X, Zhu X, et al. Design and measurement of a singledual-band tunable metamaterial absorber in the terahertz band. Physica E-Low-dimensional Syst NanoStruct, 2020, 124: 114343

    Article  Google Scholar 

  19. Liu N, Wang Y, Li W B, et al. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Phys Sin, 2022, 71: 197501

    Article  Google Scholar 

  20. Lu W, Zhang Y, Zhu Z, et al. Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology, 2016, 27: 414006

    Article  Google Scholar 

  21. Song Q, Chen H, Zhang M, et al. Broadband electrically controlled bismuth nanofilm THz modulator. APL Photonics, 2021, 6: 056103

    Article  Google Scholar 

  22. Tong J, Suo F, Zhang T, et al. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. Light Sci Appl, 2021, 10: 58

    Article  Google Scholar 

  23. Song Q, Xu Y, Zhou Z, et al. Terahertz detectors for 6G technology using quantum dot 3D concave convergence microwheel arrays. ACS Photonics, 2022, 9: 2520–2527

    Article  Google Scholar 

  24. Tang W, Politano A, Guo C, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator. Adv Funct Mater, 2018, 28: 1801786

    Article  Google Scholar 

  25. Bauer M, Ramer A, Chevtchenko S A, et al. A high-sensitivity Al-GaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans THz Sci Technol, 2019, 9: 430–444

    Article  Google Scholar 

  26. Xu H, Guo C, Zhang J, et al. PtTe2-based type-II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection. Small, 2019, 15: 1903362

    Article  Google Scholar 

  27. Guo C, Hu Y, Chen G, et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci Adv, 2020, 6: eabb6500

    Article  Google Scholar 

  28. Guo W, Dong Z, Xu Y, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv Sci, 2020, 7: 1902699

    Article  Google Scholar 

  29. Terahertz detector Golay cell product introduction and specific parameters, http://www.eachwave.com/Product/054637111.html (2022-02-14) [ACCESS 2023-07-27]

  30. Terahertz detector bolometer product introduction and specific parameters, http://www.eachwave.com/Product/456031513.html (2022-02-14) [ACCESS 2023-07-27]

  31. Song Q, Zhou Z, Zhu G, et al. Microdisk array based Weyl semimetal nanofilm terahertz detector. Nanophotonics, 2022, 11: 3595–3602

    Article  Google Scholar 

  32. Zhou Z, Song Q, Xu Y, et al. Magnetron sputtering deposited large-scale Weyl semimetal THz detector. Infrared Phys Tech, 2022, 121: 104060

    Article  Google Scholar 

  33. Ma W, Gao Y, Shang L, et al. Ultrabroadband tellurium photoelectric detector from visible to millimeter wave. Adv Sci, 2022, 9: 2103873

    Article  Google Scholar 

  34. Khodzitsky M, Tukmakova A, Zykov D, et al. THz room-temperature detector based on thermoelectric frequency-selective surface fabricated from Bi88Sb12 thin film. Appl Phys Lett, 2021, 119: 164101

    Article  Google Scholar 

  35. Jia H, Tang X, Zhu X, et al. Low-noise room-temperature terahertz detector based on the photothermoelectric effect of graphene oxide-Bi films. Optical Mater, 2023, 136: 113432

    Article  Google Scholar 

  36. Andree M, Grzyb J, Jain R, et al. Broadband modeling, analysis, and characterization of SiGe HBT terahertz direct detectors. IEEE Trans Microwave Theor Techn, 2022, 70: 1314–1333

    Article  Google Scholar 

  37. Quach P, Jollivet A, Babichev A, et al. A 5.7 THz GaN/AlGaN quantum cascade detector based on polar step quantum wells. Appl Phys Lett, 2022, 120: 171103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhou, Min Zhang or BingYuan Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12104314) and the Key Laboratory of Optoelectronic Devices Systems of Ministry of Education and Guangdong Province and Research Foundation of Liaocheng University (Grant No. 318052316).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Zhou, Y., Jia, E. et al. Large area crystalline Weyl semimetal with nano Au film based micro-fold line array for THz detector. Sci. China Technol. Sci. 66, 3267–3275 (2023). https://doi.org/10.1007/s11431-023-2478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2478-0

Navigation