Skip to main content
Log in

The effect of ammonia on soot formation in ethylene diffusion flames

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper originally investigates the effect of NH3 dilution on soot formation when NH3 is gradually added into the fuel stream in an ethylene laminar diffusion flame stabilized on a Santoro burner. The variations of flame diameter and two flame heights, i.e., mixture-strength flame height and visible flame height are carefully documented and analyzed. Moreover, local soot volume fraction (SVF) and soot temperature fields are simultaneously measured by compact-modulated absorption and emission technique, and the corresponding measurement random errors are also provided by the error propagation calculations for the first time. All the reported measurement random errors of SVF and soot temperature fields are estimated within the range of ±0.07–±0.08 ppm and ±40–±91 K, respectively. As an original database, the concomitantly measured SVF and soot temperature distributions are provided as high-fidelity datasets for refining soot formation model that is overrode by NH3. In addition, the flame cross-section average SVF Fsoot(z) is calculated for every NH3 diluted flame, and the relative contributions of NH3 dilution and chemical effect are quantitatively assessed in terms of \({F_{\max }} - {X_{{\rm{N}}{{\rm{H}}_3}}}\) plotting. It is found that when \({X_{{\rm{N}}{{\rm{H}}_3}}} < 30\% \), the chemical effect of ammonia is about twice that of the dilution effect. While \({X_{{\rm{N}}{{\rm{H}}_3}}} > 30\% \), the chemical effect and dilution effect of ammonia are gradually equal. Eventually, through modeling of the soot formation rate V in the flames, the relative contributions of chemical effect, dilution effect and thermal effect of NH3 are further novelty discriminated within the \({X_{{\rm{N}}{{\rm{H}}_3}}}\) from 0 to 46% and it is shown that NH3 chemical effect plays the dominate role in soot suppression, then the dilution effect and the thermal one at the least.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Science and technology of ammonia combustion. Proc Combust Institute, 2019, 37: 109–133

    Article  Google Scholar 

  2. Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel. J Power Sources, 2008, 185: 459–465

    Article  Google Scholar 

  3. Wang L, Xia M, Wang H, et al. Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2: 1055–1074

    Article  Google Scholar 

  4. Service R F. Liquid sunshine. Science, 2018, 361: 120–123

    Article  Google Scholar 

  5. Honkala K, Hellman A, Remediakis I N, et al. Ammonia synthesis from first-principles calculations. Science, 2005, 307: 555–558

    Article  Google Scholar 

  6. Zamfirescu C, Dincer I. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Processing Tech, 2009, 90: 729–737

    Article  Google Scholar 

  7. Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power. Prog Energy Combust Sci, 2018, 69: 63–102

    Article  Google Scholar 

  8. Okafor E C, Naito Y, Colson S, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust Flame, 2019, 204: 162–175

    Article  Google Scholar 

  9. Food and Agriculture Organization of the United Nations. World fertilizer trends and outlook to 2018. Rome, 2015

  10. Bicer Y, Dincer I, Zamfirescu C, et al. Comparative life cycle assessment of various ammonia production methods. J Clean Prod, 2016, 135: 1379–1395

    Article  Google Scholar 

  11. Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel, 2015, 159: 98–106

    Article  Google Scholar 

  12. Verkamp F J, Hardin M C, Williams J R. Ammonia combustion properties and performance in gas-turbine burners. Symposium (Int) Combust, 1967, 11: 985–992

    Article  Google Scholar 

  13. Cornelius W, Huellmantel L, Mitchell H. Ammonia as an engine fuel. SAE Transactions, 1966, 74: 300–326

    Google Scholar 

  14. Lee J H, Lee S I, Kwon O C. Effects of ammonia substitution on hydrogen/air flame propagation and emissions. Int J Hydrogen Energy, 2010, 35: 11332–11341

    Article  Google Scholar 

  15. Mørch C S, Bjerre A, Gøttrup M P, et al. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. Fuel, 2011, 90: 854–864

    Article  Google Scholar 

  16. Kumar P, Meyer T R. Experimental and modeling study of chemical-kinetics mechanisms for H2-NH3-air mixtures in laminar premixed jet flames. Fuel, 2013, 108: 166–176

    Article  Google Scholar 

  17. Ichikawa A, Hayakawa A, Kitagawa Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int J Hydrogen Energy, 2015, 40: 9570–9578

    Article  Google Scholar 

  18. Li J, Huang H, Deng L, et al. Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame. Energy, 2019, 175: 604–617

    Article  Google Scholar 

  19. Xiao H, Valera-Medina A, Bowen P J. Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions. Energy Fuels, 2017, 31: 8631–8642

    Article  Google Scholar 

  20. He X, Shu B, Nascimento D, et al. Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures. Combust Flame, 2019, 206: 189–200

    Article  Google Scholar 

  21. Li R, Konnov A A, He G, et al. Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures. Fuel, 2019, 257: 116059

    Article  Google Scholar 

  22. Okafor E C, Naito Y, Colson S, et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames. Combust Flame, 2018, 187: 185–198

    Article  Google Scholar 

  23. Tian Z, Li Y, Zhang L, et al. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust Flame, 2009, 156: 1413–1426

    Article  Google Scholar 

  24. Liu S, Zou C, Song Y, et al. Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxy-fuel combustion. Energy, 2019, 175: 250–258

    Article  Google Scholar 

  25. Ichikawa A, Naito Y, Hayakawa A, et al. Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure. Int J Hydrogen Energy, 2019, 44: 6991–6999

    Article  Google Scholar 

  26. Rocha R C, Ramos C F, Costa M, et al. Combustion of NH3/CH4/air and NH3/H2/air mixtures in a porous burner: Experiments and kinetic modeling. Energy Fuels, 2019, 33: 12767–12780

    Article  Google Scholar 

  27. Dai L, Gersen S, Glarborg P, et al. Autoignition studies of NH3/CH4 mixtures at high pressure. Combust Flame, 2020, 218: 19–26

    Article  Google Scholar 

  28. Xiao H, Lai S, Valera-Medina A, et al. Study on counterflow premixed flames using high concentration ammonia mixed with methane. Fuel, 2020, 275: 117902

    Article  Google Scholar 

  29. Ryu K, Zacharakis-Jutz G E, Kong S C. Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether. Appl Energy, 2014, 113: 488–499

    Article  Google Scholar 

  30. Gross C W, Kong S C. Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures. Fuel, 2013, 103: 1069–1079

    Article  Google Scholar 

  31. Han X, Wang Z, Costa M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/ air and NH3/CH4/air premixed flames. Combust Flame, 2019, 206: 214–226

    Article  Google Scholar 

  32. Han X, Wang Z, He Y, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames. Combust Flame, 2020, 213: 1–13

    Article  Google Scholar 

  33. Yu L, Zhou W, Feng Y, et al. The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study. Combust Flame, 2020, 217: 4–11

    Article  Google Scholar 

  34. Issayev G, Giri B R, Elbaz A M, et al. Combustion behavior of ammonia blended with diethyl ether. Proc Combust Institute, 2021, 38: 499–506

    Article  Google Scholar 

  35. Zheng Z Q, Liu W, Liu H F, et al. Optical investigation on polyoxymethylene dimethyl ethers spray flame at different oxygen levels in a constant volume vessel. Sci China Tech Sci, 2021, 64: 1611–1623

    Article  Google Scholar 

  36. Zhang L J, Liu D. Formation and characteristics of soot from pyrolysis of ethylene blended with furan fuels. Sci China Tech Sci, 2021, 64: 585–598

    Article  Google Scholar 

  37. Wang Q, Legros G, Bonnety J, et al. Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames. Combust Flame, 2017, 183: 242–252

    Article  Google Scholar 

  38. Du D X, Axelbaum R L, Law C K. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Symposium (Int) Combust, 1991, 23: 1501–1507

    Article  Google Scholar 

  39. Wang Q, Legros G, Bonnety J, et al. Experimental characterization of the different nitrogen dilution effects on soot formation in ethylene diffusion flames. Proc Combust Institute, 2017, 36: 3227–3235

    Article  Google Scholar 

  40. Axelbaum R L, Law C K. Soot formation and inert addition in diffusion flames. Symposium (Int) Combust, 1991, 23: 1517–1523

    Article  Google Scholar 

  41. Gülder Ö L, Snelling D R. Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames. Combust Flame, 1993, 92: 115–124

    Article  Google Scholar 

  42. Wang Y, Gu M, Zhu Y, et al. A review of the effects of hydrogen, carbon dioxide, and water vapor addition on soot formation in hydrocarbon flames. Int J Hydrogen Energy, 2021, 46: 31400–31427

    Article  Google Scholar 

  43. Khanehzar A, Cepeda F, Dworkin S B. The influence of nitrogen and hydrogen addition/dilution on soot formation in coflow ethylene/air diffusion flames. Fuel, 2022, 309: 122244

    Article  Google Scholar 

  44. Gülder Ö L, Snelling D R, Sawchuk R A. Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Symposium (Int) Combust, 1996, 26: 2351–2358

    Article  Google Scholar 

  45. Gülder Ö L. Influence of sulfur dioxide on soot formation in diffusion flames. Combust Flame, 1993, 92: 410–418

    Article  Google Scholar 

  46. Wang Q, Consalvi J L, Morin C, et al. Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames II: Soot radiation and flame transition analysis. J Quant Spectr Radiat Transf, 2020, 255: 107261

    Article  Google Scholar 

  47. Ren F, Cheng X, Gao Z, et al. Effects of NH3 addition on polycyclic aromatic hydrocarbon and soot formation in C2H4 co-flow diffusion flames. Combust Flame, 2022, 241: 111958

    Article  Google Scholar 

  48. Bockhorn H, Fetting F, Meyer U, et al. Measurement of the soot concentration and soot particle sizes in propane oxygen flames. Symp (Int) Combust, 1981, 18: 1137–1147

    Article  Google Scholar 

  49. Haynes B S, Jander H, Mätzing H, et al. The influence of gaseous additives on the formation of soot in premixed flames. Symp (Int) Combust, 1982, 19: 1379–1385

    Article  Google Scholar 

  50. Renard C, Dias V, Van Tiggelen P J, et al. Flame structure studies of rich ethylene-oxygen-argon mixtures doped with CO2, or with NH3, or with H2O. Proc Combust Institute, 2009, 32: 631–637

    Article  Google Scholar 

  51. Bennett A M, Liu P, Li Z, et al. Soot formation in laminar flames of ethylene/ammonia. Combust Flame, 2020, 220: 210–218

    Article  Google Scholar 

  52. Montgomery M J, Kwon H, Dreyer J A H, et al. Effect of ammonia addition on suppressing soot formation in methane co-flow diffusion flames. Proc Combust Institute, 2021, 38: 2497–2505

    Article  Google Scholar 

  53. Li Y, Zhang Y, Zhan R, et al. Effects of ammonia addition on PAH formation in laminar premixed ethylene flames based on laser-induced fluorescence measurement. Energy, 2020, 213: 118868

    Article  Google Scholar 

  54. Li Y, Zhang Y, Zhan R, et al. Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames. Fuel Process Technol, 2021, 214: 106682

    Article  Google Scholar 

  55. Santoro R J, Semerjian H G, Dobbins R A. Soot particle measurements in diffusion flames. Combust Flame, 1983, 51: 203–218

    Article  Google Scholar 

  56. Wang Q, Li Z, You X, et al. Development of compact-modulated absorption/emission technique towards micro-gravity sooting flame measurements. SSRN J, 2022, doi: https://doi.org/10.2139/ssrn.4268966

  57. Legros G, Wang Q, Bonnety J, et al. Simultaneous soot temperature and volume fraction measurements in axis-symmetric flames by a two-dimensional modulated absorption/emission technique. Combust Flame, 2015, 162: 2705–2719

    Article  Google Scholar 

  58. Vargas-Ubera J, Sánchez-Escobar J J, Aguilar J F, et al. Numerical study of particle-size distributions retrieved from angular light-scattering data using an evolution strategy with the Fraunhofer approximation. Appl Opt, 2007, 46: 3602–3610

    Article  Google Scholar 

  59. Latimer P, Barber P. Scattering by ellipsoids of revolution a comparison of theoretical methods. J Colloid Interface Sci, 1978, 63: 310–316

    Article  Google Scholar 

  60. Chang H, Charalampopoulos T T. Determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc Lond A, 1990, 430: 577–591

    Article  Google Scholar 

  61. Blacha T, Di Domenico M, Gerlinger P, et al. Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot. Combust Flame, 2012, 159: 181–193

    Article  Google Scholar 

  62. Arana C P, Pontoni M, Sen S, et al. Field measurements of soot volume fractions in laminar partially premixed coflow ethylene air flames. Combust Flame, 2004, 138: 362–372

    Article  Google Scholar 

  63. McEnally C S, Schaffer A M, Long M B, et al. Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame. Symposium (Int) Combust, 1998, 27: 1497–1505

    Article  Google Scholar 

  64. Montgomery M J, Kwon H, Xuan Y, et al. Chemical influence of ammonia on suppressing soot formation pathways. In: Chemical Influence of Ammonia on Suppressing Soot Formation Pathways. New Haven, 2020

  65. Roper F G. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust Flame, 1977, 29: 219–226

    Article  Google Scholar 

  66. Gülder Ö L. Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames. Combust Flame, 1989, 78: 179–194

    Article  Google Scholar 

  67. Glassman I. Soot formation in combustion processes. Symposium (Int) Combust, 1989, 22: 295–311

    Article  Google Scholar 

  68. ANSYS Chemkin Theory Manual 17.0 (15151). San Diego: ANSYS Reaction Design, 2015

  69. Dasch C J. One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Appl Opt, 1992, 31: 1146–1152

    Article  Google Scholar 

  70. Turns S R. An Introduction to Combustion. New York: McGraw-Hill Companies, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QianLong Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 52130605).

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information for supplementary data provided with

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yan, Z., Li, C. et al. The effect of ammonia on soot formation in ethylene diffusion flames. Sci. China Technol. Sci. 66, 3422–3438 (2023). https://doi.org/10.1007/s11431-023-2467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2467-7

Navigation