Skip to main content
Log in

Ferroelectric-controlled graphene plasmonic surfaces for all-optical neuromorphic vision

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Artificial visual systems can recognize desired objects and information from complex environments, and are therefore highly desired for pattern recognition, object detection, and imaging applications. However, state-of-the-art artificial visual systems with high recognition performances that typically consist of electronic devices face the challenges of requiring huge storage space and high power consumption owing to redundant data. Here, we report a terahertz (THz) frequency-selective surface using a graphene split-ring resonator driven by ferroelectric polarization for efficient visual system applications. The downward polarization of the ferroelectric material offers an ultrahigh electrostatic field for doping p-type graphene with an anticipated Fermi level. By optimizing the geometric parameters of the devices and modulating the carrier behaviors of graphene, our plasmonic devices exhibit a tunable spectral response in a range of 1.7–6.0 THz with continuous transmission values. The all-optical neural network using graphene plasmonic surfaces designed in this study exhibited excellent performance in visual preprocessing and convolutional filtering and achieved an ultrahigh recognition accuracy of up to 99.3% in training the Modified National Institute of Standards and Technology (MNIST) handwritten digit dataset. These features demonstrate the great potential of graphene plasmonic devices for future smart artificial vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhou F, Zhou Z, Chen J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 2019, 14: 776–782

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Lu Y, Zhang J, et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small, 2021, 17: 2005491

    Article  CAS  Google Scholar 

  3. Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun, 2022, 13: 3853

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Meng J, Wang T, Zhu H, et al. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22: 81–89

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Sangwan V K, Hersam M C. Neuromorphic nanoelectronic materials. Nat Nanotechnol, 2020, 15: 517–528

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575: 473–479

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 2019, 29: 1903700

    Article  CAS  Google Scholar 

  8. van de Burgt Y, Melianas A, Keene S T, et al. Organic electronics for neuromorphic computing. Nat Electron, 2018, 1: 386–397

    Article  Google Scholar 

  9. Choi C, Choi M K, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun, 2017, 8: 1664

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497: 95–99

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360: 998–1003

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641–646

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Shang J, Liu G, Yang H, et al. Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv Funct Mater, 2014, 24: 2171–2179

    Article  CAS  Google Scholar 

  14. Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons. Nat Nanotech, 2016, 11: 693–699

    Article  CAS  ADS  Google Scholar 

  15. Boyn S, Grollier J, Lecerf G, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat Commun, 2017, 8: 14736

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Fuller E J, Keene S T, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364: 570–574

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Du C, Cai F, Zidan M A, et al. Reservoir computing using dynamic memristors for temporal information processing. Nat Commun, 2017, 8: 2204

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Sebastian A, Le Gallo M, Khaddam-Aljameh R, et al. Memory devices and applications for in-memory computing. Nat Nanotechnol, 2020, 15: 529–544

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Xia Q, Yang J J. Memristive crossbar arrays for brain-inspired computing. Nat Mater, 2019, 18: 309–323

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Tanaka G, Yamane T, Héroux J B, et al. Recent advances in physical reservoir computing: A review. Neural Networks, 2019, 115: 100–123

    Article  PubMed  Google Scholar 

  21. Mennel L, Symonowicz J, Wachter S, et al. Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020, 579: 62–66

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Lee W, Lee J, Yun H, et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv Mater, 2017, 29: 1702902

    Article  Google Scholar 

  23. Guo J, Liu Y, Lin L, et al. Chromatic plasmonic polarizer-based synapse for all-optical convolutional neural network. Nano Lett, 2023, 23: 9651–9656

    Article  PubMed  ADS  Google Scholar 

  24. Schwierz F. Graphene transistors. Nat Nanotech, 2010, 5: 487–496

    Article  CAS  ADS  Google Scholar 

  25. Novoselov K S, Fal’Ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192–200

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8: 1086–1101

    Article  CAS  PubMed  Google Scholar 

  27. Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nat Photon, 2012, 6: 749–758

    Article  CAS  ADS  Google Scholar 

  28. Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech, 2011, 6: 630–634

    Article  CAS  ADS  Google Scholar 

  29. Cheng Y, Wang J. Tunable terahertz circular polarization convertor based on graphene metamaterial. Diamond Relat Mater, 2021, 119: 108559

    Article  CAS  ADS  Google Scholar 

  30. Cheng Y, Zhu X, Li J, et al. Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Physica E, 2021, 134: 114893

    Article  CAS  Google Scholar 

  31. Feng H, Xu Z, Li K, et al. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene meta-materials. Opt Express, 2021, 29: 7158–7167

    Article  PubMed  ADS  Google Scholar 

  32. Cheng Y, Qian Y, Luo H, et al. Terahertz narrowband perfect meta-surface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E, 2023, 146: 115527

    Article  CAS  Google Scholar 

  33. Tao X, Qi L, Fu T, et al. A tunable dual-band asymmetric transmission metasurface with strong circular dichroism in the terahertz communication band. Optics Laser Tech, 2022, 150: 107932

    Article  CAS  Google Scholar 

  34. Zhu X, Cheng Y, Chen F, et al. Efficiency adjustable terahertz circular polarization anomalous refraction and planar focusing based on a bi-layered complementary Z-shaped graphene metasurface. J Opt Soc Am B, 2022, 39: 705–712

    Article  CAS  ADS  Google Scholar 

  35. Zhu X, Cheng Y, Fan J, et al. Switchable efficiency terahertz anomalous refraction and focusing based on graphene metasurface. Diamond Relat Mater, 2022, 121: 108743

    Article  CAS  ADS  Google Scholar 

  36. Yang D, Cheng Y, Chen F, et al. Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diamond Relat Mater, 2023, 131: 109605

    Article  CAS  ADS  Google Scholar 

  37. Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29: 1803807

    Article  Google Scholar 

  38. Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780–793

    Article  CAS  ADS  Google Scholar 

  39. Guo J X, Li S D, Lin L, et al. Enhanced-performance self-powered photodetector based on multi-layer MoS2 sandwiched between two asymmetric graphene contacts. Sci China Tech Sci, 2022, 65: 2658–2666

    Article  CAS  Google Scholar 

  40. Ni G X, Wang L, Goldflam M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat Photon, 2016, 10: 244–247

    Article  CAS  ADS  Google Scholar 

  41. Ferrari A C, Bonaccorso F, Fal’ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7: 4598–4810

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photon, 2013, 7: 883–887

    Article  CAS  ADS  Google Scholar 

  43. Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotech, 2008, 3: 210–215

    Article  CAS  Google Scholar 

  44. Guo J, Lin L, Li S, et al. Ferroelectric superdomain controlled graphene plasmon for tunable mid-infrared photodetector with dual-band spectral selectivity. Carbon, 2022, 189: 596–603

    Article  CAS  Google Scholar 

  45. Martin L W, Rappe A M. Thin-film ferroelectric materials and their applications. Nat Rev Mater, 2017, 2: 16087

    Article  CAS  ADS  Google Scholar 

  46. Guo J, Liu Y, Lin Y, et al. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications. Nanoscale, 2019, 11: 20868–20875

    Article  CAS  PubMed  Google Scholar 

  47. Tian Y, Wei L, Zhang Q, et al. Water printing of ferroelectric polarization. Nat Commun, 2018, 9: 3809

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Zhang J, Ke X, Gou G, et al. A nanoscale shape memory oxide. Nat Commun, 2013, 4: 2768

    Article  PubMed  ADS  Google Scholar 

  49. Guo J, Li S, Chen J, et al. Tunable plasmonic devices by integrating graphene with ferroelectric nanocavity. Adv Mater Inter, 2022, 9: 2200776

    Article  CAS  Google Scholar 

  50. Polyanskiy M N. Refractive index database. (Accessed 2021-2010-2008) https://refractiveindex.info/

  51. Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15: 102–114

    Article  CAS  ADS  Google Scholar 

  52. Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575: 607–617

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Boybat I, Le Gallo M, Nandakumar S R, et al. Neuromorphic computing with multi-memristive synapses. Nat Commun, 2018, 9: 2514

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Torrejon J, Riou M, Araujo F A, et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature, 2017, 547: 428–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liu or JunXiong Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62201096), the Engineering Research Center of Digital Imaging and Display, Ministry of Education, Soochow University (Grant No. SDGC2246), and the Open Project Program of Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems (Grant No. 2023SZKF12).

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, Y., Li, S. et al. Ferroelectric-controlled graphene plasmonic surfaces for all-optical neuromorphic vision. Sci. China Technol. Sci. 67, 765–773 (2024). https://doi.org/10.1007/s11431-023-2456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2456-1

Navigation