Skip to main content
Log in

Power and efficiency optimizations of Maisotsenko-Atkinson, Dual and Miller cycles and performance comparisons with corresponding traditional cycles

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Maisotsenko cycle (M-cycle) has been combined with some cooling and power cycles, and behaves important thermodynamic advantage. Finite-time thermodynamics (FTT) is applied to establish three endoreversible models of M-Atkinson, M-Dual and M-Miller cycles. They are performed based on models of endoreversible Atkinson, Dual and Miller cycles by combing FTT model with M-cycle concept. Power output (POW) and thermal efficiency (TEF) of those M-cycles are studied and optimized by numerical calculations. The maximum power output (MPO) and the corresponding pressure ratio and TEF, the maximum TEF and the corresponding pressure ratio and POW, as well as optimal ranges of pressure ratio are obtained. Effects of mass flow rate of circulating water injection, initial cycle temperature and maximum cycle temperature on cycle POW, TEF and optimal pressure ratio range are analyzed. The optimal performances of the three M-cycles are compared with those of traditional Atkinson, Dual and Miller cycles under the same conditions. The results show that for the three M-cycles, end temperature of adiabatic expansion process of M-cycle is less than that of the corresponding traditional cycle, POW and TEF at arbitrary pressure ratio of M-cycle are much higher than those of the corresponding traditional cycle, and performance characteristics of M-cycles are superior to those of the corresponding traditional cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maisotsenko V S, Gillan L E, Heaton T L, et al. Method and plate apparatus for dew point evaporate coolers. US Patent, No. 6581402B2, 2003-06-24

  2. Gillan L. Maisotsenko cycle for cooling processes. Inter J Ener Clean Env, 2008, 9: 47–64

    Article  Google Scholar 

  3. Buyadgie D, Buyadgie O, Drakhnia O, et al. Theoretical study of the combined M-cycle/ejector air-conditioning system. Inter J Ener Clean Env, 2011, 12: 309–318

    Article  Google Scholar 

  4. Miyazaki T, Akisawa A, Nikai I. The cooling performance of a building integrated evaporative cooling system driven by solar energy. Energy Build, 2011, 43: 2211–2218

    Article  Google Scholar 

  5. Maisotsenko V, Treyger I. Way to energy abundance can be found through the maisotsenko cycle. Inter J Ener Clean Env, 2011, 12: 319–326

    Article  Google Scholar 

  6. Gadalla M, Saghafifar M. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems. Energy Convers Manage, 2016, 119: 187–202

    Article  Google Scholar 

  7. Pandelidis D, Anisimov S, Worek W M, et al. Analysis of different applications of Maisotsenko cycle heat exchanger in the desiccant air conditioning systems. Energy Build, 2017, 140: 154–170

    Article  Google Scholar 

  8. Dizaji H S, Hu E J, Chen L, et al. Comprehensive exergetic study of regenerative Maisotsenko air cooler; formulation and sensitivity analysis. Appl Thermal Eng, 2019, 152: 455–467

    Article  Google Scholar 

  9. Pandelidis D. Numerical study and performance evaluation of the Maisotsenko cycle cooling tower. Energy Convers Manage, 2020, 210: 112735

    Article  Google Scholar 

  10. Dizaji H S, Hu E, Chen L, et al. Proposing the concept of mini Maisotsenko cycle cooler for electronic cooling purposes; experimental study. Case Stud Thermal Eng, 2021, 27: 101325

    Article  Google Scholar 

  11. Dizaji H S, Hu E J, Chen L. A comprehensive review of the Maisotsenko-cycle based air conditioning systems. Energy, 2018, 156: 725–749

    Article  Google Scholar 

  12. Zhu G, Wen T, Wang Q, et al. A review of dew-point evaporative cooling: Recent advances and future development. Appl Energy, 2022, 312: 118785

    Article  Google Scholar 

  13. Gillan L E, Maisotsenko V. Maisotsenko open cycle used for gas turbine power generation. In: ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. Atlanta, 2003. 75–84

  14. Maisotsenko V S, Gillan L E, Heaton T L, et al. Power system and method. US Patent, No. 7007453, 2006-03-07

  15. Mahmood M H, Sultan M, Miyazaki T, et al. Overview of the Maisotsenko cycle–A way towards dew point evaporative cooling. Renew Sustain Energy Rev, 2016, 66: 537–555

    Article  Google Scholar 

  16. Reyzin I. Evaluation of the maisotsenko power cycle thermodynamic efficiency. Inter J Ener Clean Env, 2011, 12: 129–139

    Article  Google Scholar 

  17. Saghafifar M, Gadalla M. Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model. Appl Energy, 2015, 149: 338–353

    Article  Google Scholar 

  18. Saghafifar M, Gadalla M. Analysis of Maisotsenko open gas turbine bottoming cycle. Appl Thermal Eng, 2015, 82: 351–359

    Article  Google Scholar 

  19. Khalatov A A, Severin S D, Brodetskiy P I, et al. Sub-atmospheric reverse Brayton cycle with waste heat regeneration according to the Maisotsenko cycle. Reports of the National Academy of Sciences of Ukraine. 2015

  20. Saghafifar M, Gadalla M. Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis. Appl Energy, 2017, 190: 686–702

    Article  Google Scholar 

  21. Tariq R, Sheikh N A. Numerical heat transfer analysis of Maisotsenko Humid Air Bottoming Cycle–A study towards the optimization of the air-water mixture at bottoming turbine inlet. Appl Thermal Eng, 2018, 133: 49–60

    Article  Google Scholar 

  22. Zhu G, Chow T T, Fong K F, et al. Design optimisation and performance appraisal of a combined cooling, heating and power system primed with Maisotsenko combustion turbine cycle. Energy Convers Manage, 2018, 177: 91–106

    Article  Google Scholar 

  23. Zhu G, Chow T T, Fong K F, et al. Investigation on humidified gas turbine cycles with Maisotsenko-cycle-based air saturator. Energy Procedia, 2019, 158: 5195–5200

    Article  Google Scholar 

  24. Dizaji H S, Hu E J, Chen L, et al. Using novel integrated Maisotsenko cooler and absorption chiller for cooling of gas turbine inlet air. Energy Convers Manage, 2019, 195: 1067–1078

    Article  Google Scholar 

  25. Zhu G, Chow T T, Lee C K. Performance analysis of biogas-fueled maisotsenko combustion turbine cycle. Appl Thermal Eng, 2021, 195: 117247

    Article  Google Scholar 

  26. Pourhedayat S, Hu E, Chen L. Simulation of innovative hybridizing M-cycle cooler and absorption-refrigeration for pre-cooling of gas turbine intake air: Including a case study for Siemens SGT-750 gas turbine. Energy, 2022, 247: 123356

    Article  Google Scholar 

  27. Zhu G, Chow T T, Maisotsenko V S, et al. Maisotsenko power cycle technologies: Research, development and future needs. Appl Thermal Eng, 2023, 223: 120023

    Article  Google Scholar 

  28. Andresen B. Finite-Time Thermodynamics. Copenhagen: University of Copenhagen, 1983

    Google Scholar 

  29. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359

    Article  MATH  Google Scholar 

  30. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704

    Article  Google Scholar 

  31. Berry R, Salamon P, Andresen B. How it all began. Entropy, 2020, 22: 908

    Article  Google Scholar 

  32. Paul R, Hoffmann K H. Optimizing the piston paths of stirling cycle cryocoolers. J Non-Equilib Thermodyn, 2022, 47: 195–203

    Article  Google Scholar 

  33. Li J, Chen L. Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law. J Non-Equilib Thermodyn, 2022, 47: 433–441

    Article  Google Scholar 

  34. Chen L, Xia S. Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance. J Non-Equilib Thermodyn, 2022, 47: 329–338

    Article  Google Scholar 

  35. Chen L, Xia S. Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory. Physica A, 2023, 617: 128654

    Article  MATH  Google Scholar 

  36. Ge Y, Chen L, Feng H. Optimal piston motion configuration for irreversible Otto cycle heat engine with maximum ecological function objective. Energy Rep, 2022, 8: 2875–2887

    Article  Google Scholar 

  37. Chen L, Ma K, Feng H, et al. Optimal piston motion paths for a light-driven engine with generalized radiative law and maximum ecological function. Case Stud Thermal Eng, 2022, 40: 102505

    Article  Google Scholar 

  38. Chen L, Xia S. Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q∝(ΔT)m. J Non-Equilib Thermodyn, 2023, 48: 107–118

    Article  Google Scholar 

  39. Li P, Chen L, Xia S, et al. Multi-objective optimal configurations of a membrane reactor for steam methane reforming. Energy Rep, 2022, 8: 527–538

    Article  Google Scholar 

  40. Li P L, Chen L G, Xia S J, et al. Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation. Sci China Tech Sci, 2022, 65: 657–678

    Article  Google Scholar 

  41. Chen L, Xia S. Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory. Energy, 2022, 261: 125277

    Article  Google Scholar 

  42. Chen L G, Xia S J. Power-optimization of multistage non-isothermal chemical engine system via Onsager equations, Hamilton-Jacobi-Bellman theory and dynamic programming. Sci China Tech Sci, 2023, 66: 841–852

    Article  Google Scholar 

  43. Chen L, Xia S. Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines. J Non-Equilib Thermodyn, 2023, 48: 41–53

    Article  Google Scholar 

  44. Chen L, Shi S, Ge Y, et al. Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump. Energy, 2023, 282: 128717

    Article  Google Scholar 

  45. Zang P, Ge Y, Chen L, et al. Power density characteristic analysis and multi-objective optimization of an irreversible porous medium engine cycle. Case Stud Thermal Eng, 2022, 35: 102154

    Article  Google Scholar 

  46. Zhang X, Yang G F, Yan M Q, et al. Design of an all-day electrical power generator based on thermoradiative devices. Sci China Tech Sci, 2021, 64: 2166–2173

    Article  Google Scholar 

  47. Lin J, Xie S, Jiang C X, et al. Maximum power and corresponding efficiency of an irreversible blue heat engine for harnessing waste heat and salinity gradient energy. Sci China Tech Sci, 2022, 65: 646–656

    Article  Google Scholar 

  48. Chen L, Xia S. Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics. Energy, 2022, 255: 124526

    Article  Google Scholar 

  49. Chen L G, Xia S J. Power output and efficiency optimization of endoreversible non-isothermal chemical engine via Lewis analogy. Sci China Tech Sci, 2023, 66: 2651–2659

    Article  Google Scholar 

  50. Qi C, Ding Z, Chen L, et al. Modeling of irreversible two-stage combined thermal brownian refrigerators and their optimal performance. J Non-Equilib Thermodyn, 2021, 46: 175–189

    Article  Google Scholar 

  51. Chen L, Qi C, Ge Y, et al. Thermal Brownian heat engine with external and internal irreversibilities. Energy, 2022, 255: 124582

    Article  Google Scholar 

  52. Qi C, Chen L, Ge Y, et al. Thermal Brownian refrigerator with external and internal irreversibilities. Case Stud Thermal Eng, 2022, 36: 102185

    Article  Google Scholar 

  53. Chen L, Shi S, Ge Y, et al. Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid. Energy, 2023, 282: 128817

    Article  Google Scholar 

  54. Xu H, Chen L, Ge Y, et al. Multi-objective optimization of Stirling heat engine with various heat and mechanical losses. Energy, 2022, 256: 124699

    Article  Google Scholar 

  55. Feng H, Wu Z, Chen L, et al. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers Manage, 2021, 227: 113585

    Article  Google Scholar 

  56. Yang W, Feng H, Chen L, et al. Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle. Energy, 2023, 278: 127755

    Article  Google Scholar 

  57. Chen L, Shi S, Ge Y, et al. Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump. Energy, 2023, 263: 125956

    Article  Google Scholar 

  58. Chen L, Shi S, Feng H, et al. Maximum ecological function performance for a three-reservoir endoreversible chemical pump. J Non-Equilib Thermodyn, 2023, 48: 179–194

    Article  Google Scholar 

  59. Kong R, Chen L, Xia S, et al. Entropy generation rate minimization for sulfur trioxide decomposition membrane reactor. Energy Rep, 2022, 8: 1483–1496

    Article  Google Scholar 

  60. Chen L G, Li P L, Xia S J, et al. Multi-objective optimization for membrane reactor for steam methane reforming heated by molten salt. Sci China Tech Sci, 2022, 65: 1396–1414

    Article  Google Scholar 

  61. Jin Q, Xia S, Chen L. A modified recompression S-CO2 Brayton cycle and its thermodynamic optimization. Energy, 2023, 263: 126015

    Article  Google Scholar 

  62. Qiu S S, Ding Z M, Chen L G, et al. Performance optimization of three-terminal energy selective electron generators. Sci China Tech Sci, 2021, 64: 1641–1652

    Article  Google Scholar 

  63. Qiu S S, Ding Z M, Chen L G, et al. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci China Tech Sci, 2021, 64: 1007–1016

    Article  Google Scholar 

  64. Liang T, Hu C, Fu T, et al. The maximum efficiency enhancement of a solar-driven graphene-anode thermionic converter realizing total photon reflection. Energy, 2022, 239: 121954

    Article  Google Scholar 

  65. Huang Y, Zhao Y. Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system. Energy, 2023, 266: 126508

    Article  Google Scholar 

  66. Lu S, Huang Y. Graphene thermionic energy converter combined with an absorption heat transformer for electricity generation and thermal upgrading. Appl Thermal Eng, 2023, 219: 119640

    Article  Google Scholar 

  67. Chen L, Meng F, Ge Y, et al. Performance optimization for a multi-element thermoelectric refrigerator with linear phenomenological heat transfer law. J Non-Equilib Thermodyn, 2021, 46: 149–162

    Article  Google Scholar 

  68. Chen L, Lorenzini G. Comparative performance for thermoelectric refrigerators with radiative and Newtonian heat transfer laws. Case Stud Thermal Eng, 2022, 34: 102069

    Article  Google Scholar 

  69. Chen L G, Ge Y L, Feng H J, et al. Energy and exergy analyses and optimizations for two-stage TEC driven by two-stage TEG with Thomson effect. Sci China Tech Sci, 2023, doi: https://doi.org/10.1007/s11431-023-2498-9

  70. Chen L, Lorenzini G. Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer. Energy, 2023, 270: 126824

    Article  Google Scholar 

  71. Zhu F, Chen L, Wang W. Thermodynamic analysis and optimization of an irreversible maisotsenko-diesel cycle. J Therm Sci, 2019, 28: 659–668

    Article  Google Scholar 

  72. Zhu F, Chen L, Wang W. Thermodynamic analysis of an irreversible maisotsenko reciprocating brayton cycle. Entropy, 2018, 20: 167

    Article  Google Scholar 

  73. Shen J, Chen L, Ge Y, et al. Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle. Eur Phys J Plus, 2019, 134: 293

    Article  Google Scholar 

  74. Chen L, Shen J, Ge Y, et al. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers Manage, 2020, 217: 113001

    Article  Google Scholar 

  75. Ge Y, Chen L, Sun F, et al. Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid. Appl Energy, 2006, 83: 1210–1221

    Article  Google Scholar 

  76. Ebrahimi R. Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Math Comput Model, 2011, 53: 1289–1297

    Article  MATH  Google Scholar 

  77. Ebrahimi R. Thermodynamic modeling of an atkinson cycle with respect to relative air-fuel ratio, fuel mass flow rate and residual gases. Acta Phys Pol A, 2013, 124: 29–34

    Article  Google Scholar 

  78. Shi S, Ge Y, Chen L, et al. Four-objective optimization of irreversible atkinson cycle based on NSGA-II. Entropy, 2020, 22: 1150

    Article  MathSciNet  Google Scholar 

  79. Ge Y, Wu H, Chen L, et al. Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle. Energy, 2023, 270: 126856

    Article  Google Scholar 

  80. Blank D A, Wu C. The effect of combustion on a power-optimized endoreversible Dual cycle. Energy Convers Manage, 1994, 14: 98–103

    Google Scholar 

  81. Chen L, Ge Y, Sun F, et al. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle. Energy Convers Manage, 2006, 47: 3224–3234

    Article  Google Scholar 

  82. Ebrahimi R. Effects of pressure ratio on network output and efficiency characteristics for an endoreversible dual cycle. J Energy Inst, 2011, 84: 30–33

    Article  Google Scholar 

  83. Atmaca M, Gümüş M, Demir A. Comparative thermodynamic analysis of dual cycle under alternative conditions. Therm Sci, 2011, 15: 953–960

    Article  Google Scholar 

  84. Ust Y, Sahin B, Kayadelen H K, et al. Heat transfer effects on the performance of an air-standard irreversible dual cycle. Int J Vehicle Des, 2013, 63: 102–116

    Article  Google Scholar 

  85. Ebrahimi R, Dehkordi N S. Effects of design and operating parameters on entropy generation of a dual cycle. J Therm Anal Calorim, 2018, 133: 1609–1616

    Article  Google Scholar 

  86. Ge Y, Shi S, Chen L, et al. Power density analysis and multi-objective optimization for an irreversible dual cycle. J Non-Equilib Thermodyn, 2022, 47: 289–309

    Article  Google Scholar 

  87. Ge Y, Chen L, Sun F, et al. Effects of heat transfer and friction on the performance of an irreversible air-standard miller cycle. Int Commun Heat Mass Transfer, 2005, 32: 1045–1056

    Article  Google Scholar 

  88. Ebrahimi R. Performance analysis of an irreversible Miller cycle with considerations of relative air-fuel ratio and stroke length. Appl Math Model, 2012, 36: 4073–4079

    Article  MATH  Google Scholar 

  89. Lin J, Xu Z, Chang S, et al. Finite-time thermodynamic modeling and analysis of an irreversible Miller cycle working on a four-stroke engine. Int Commun Heat Mass Transfer, 2014, 54: 54–59

    Article  Google Scholar 

  90. Ebrahimi R. Second law analysis on an air-standard Miller engine. Acta Phys Pol A, 2016, 129: 1079–1082

    Article  Google Scholar 

  91. Gonca G, Sahin B. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Appl Thermal Eng, 2017, 118: 138–146

    Article  Google Scholar 

  92. Zhao J, Xu F. Finite-time thermodynamic modeling and a comparative performance analysis for irreversible Otto, Miller and Atkinson cycles. Entropy, 2018, 20: 75

    Article  Google Scholar 

  93. You J, Chen L G, Wu Z X, et al. Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci China Tech Sci, 2018, 61: 453–463

    Article  Google Scholar 

  94. Ge Y, Chen L, Sun F. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139

    Article  Google Scholar 

  95. Chen L G, Ge Y L. Thermodynamic Optimization Theory for Internal Combustion Engine Cycles (in Chinese). Beijing: Science Press, 2023

    Google Scholar 

  96. Chen L G, Ge Y L. Finite Time Thermodynamic Optimization for Air Standard Thermal Power Cycles. London: Book Publisher International, 2023

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52171317 and 51779262).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhu, F., Shi, S. et al. Power and efficiency optimizations of Maisotsenko-Atkinson, Dual and Miller cycles and performance comparisons with corresponding traditional cycles. Sci. China Technol. Sci. 66, 3393–3411 (2023). https://doi.org/10.1007/s11431-023-2444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2444-1

Navigation