Skip to main content
Log in

Spatial light modulation for femtosecond laser manufacturing: Current developments and challenges

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Since the invention of lasers, spatial-light-modulated laser processing has become a powerful tool for various applications. It enables multidimensional and dynamic modulation of the laser beam, which significantly improves the processing efficiency, accuracy, and flexibility, and presents wider prospects over traditional mechanical technologies for machining three-dimensional, hard, brittle, or transparent materials. In this review, we introduce: (1) The role of spatial light modulation technology in the development of femtosecond laser manufacturing; (2) the structured light generated by spatial light modulation and its generation methods; and (3) representative applications of spatial-light-modulated femtosecond laser manufacturing, including aberration correction, parallel processing, focal field engineering, and polarization control. Finally, we summarize the present challenges in the field and possible future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev, 2014, 1: 041303

    Article  Google Scholar 

  2. Sugioka K, Cheng Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci Appl, 2014, 3: e149

    Article  Google Scholar 

  3. Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater, 2002, 1: 217–224

    Article  Google Scholar 

  4. Malinauskas M, Farsari M, Piskarskas A, et al. Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys Rep, 2013, 533: 1–31

    Article  Google Scholar 

  5. Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications. Nanophotonics, 2015, 4: 332–352

    Article  Google Scholar 

  6. Malinauskas M, Zukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: From science to industry. Light Sci Appl, 2016, 5: e16133

    Article  Google Scholar 

  7. Liu X Q, Bai B F, Chen Q D, et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv, 2019, 2: 19002101–19002114

    Article  Google Scholar 

  8. Fan H, Ryu M, Honda R, et al. Laser-inscribed stress-induced birefringence of sapphire. Nanomaterials, 2019, 9: 1414

    Article  Google Scholar 

  9. Itoh K, Watanabe W, Nolte S, et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull, 2006, 31: 620–625

    Article  Google Scholar 

  10. Hua J G, Liang S Y, Chen Q D, et al. Free-form micro-optics out of crystals: Femtosecond laser 3D sculpturing. Adv Funct Mater, 2022, 32: 2200255

    Article  Google Scholar 

  11. Lu Y M, Duan Y Z, Liu X Q, et al. High-quality rapid laser drilling of transparent hard materials. Opt Lett, 2022, 47: 921–924

    Article  Google Scholar 

  12. Stoian R, Bhuyan M K, Zhang G, et al. Ultrafast Bessel beams: Advanced tools for laser materials processing. Adv Opt Technol, 2018, 7: 165–174

    Article  Google Scholar 

  13. Kumar S, Sotillo B, Chiappini A, et al. Study of graphitic microstructure formation in diamond bulk by pulsed Bessel beam laser writing. Appl Phys A, 2017, 123: 698

    Article  Google Scholar 

  14. Velpula P K, Bhuyan M K, Courvoisier F, et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photon Rev, 2016, 10: 230–244

    Article  Google Scholar 

  15. Kontenis G, Gailevičius D, Jonušauskas L, et al. Dynamic aberration correction via spatial light modulator (SLM) for femtosecond direct laser writing: Towards spherical voxels. Opt Express, 2020, 28: 27850–27864

    Article  Google Scholar 

  16. Hering J, Waller E H, Von Freymann G. Automated aberration correction of arbitrary laser modes in high numerical aperture systems. Opt Express, 2016, 24: 28500–28508

    Article  Google Scholar 

  17. Li Y, Hong M. Parallel laser micro/nano-processing for functional device fabrication. Laser Photon Rev, 2020, 14: 1900062

    Article  Google Scholar 

  18. Xu B, Hu W, Du W, et al. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Opt Express, 2017, 25: 16739–16753

    Article  Google Scholar 

  19. Yang L, El-Tamer A, Hinze U, et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics Lasers Eng, 2015, 70: 26–32

    Article  Google Scholar 

  20. Shank C V, Ippen E P. Subpicosecond kilowatt pulses from a mode-locked CW dye laser. Appl Phys Lett, 1974, 24: 373–375

    Article  Google Scholar 

  21. Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices. Nature, 2001, 412: 697–698

    Article  Google Scholar 

  22. He G S, Tan L S, Zheng Q, et al. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem Rev, 2008, 108: 1245–1330

    Article  Google Scholar 

  23. Deubel M, von Freymann G, Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater, 2004, 3: 444–447

    Article  Google Scholar 

  24. Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett, 1997, 22: 132–134

    Article  Google Scholar 

  25. Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas Sci Technol, 2001, 12: 1784–1794

    Article  Google Scholar 

  26. Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl Phys Lett, 1994, 64: 3071–3073

    Article  Google Scholar 

  27. Lenzner M, Krüger J, Kautek W, et al. Incubation of laser ablation in fused silica with 5-fs pulses. Appl Phys A-Mater Sci Processing, 1999, 69: 465–466

    Article  Google Scholar 

  28. Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys Rev Lett, 1995, 74: 2248–2251

    Article  Google Scholar 

  29. Sokolowski-Tinten K, Blome C, Dietrich C, et al. Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys Rev Lett, 2001, 87: 225701

    Article  Google Scholar 

  30. Rethfeld B, Sokolowski-Tinten K, von der Linde D, et al. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys Rev B, 2002, 65: 092103

    Article  Google Scholar 

  31. Jiang L, Tsai H L. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl Phys Lett, 2005, 87: 151104

    Article  Google Scholar 

  32. Montross C, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int J Fatigue, 2002, 24: 1021–1036

    Article  Google Scholar 

  33. Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser. Opt Lett, 1996, 21: 1729–1731

    Article  Google Scholar 

  34. Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials. Appl Phys Lett, 1997, 71: 882–884

    Article  Google Scholar 

  35. Schaffer C B, Brodeur A, García J F, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett, 2001, 26: 93–95

    Article  Google Scholar 

  36. Shimotsuma Y, Kazansky P G, Qiu J, et al. Self-organized nano-gratings in glass irradiated by ultrashort light pulses. Phys Rev Lett, 2003, 91: 247405

    Article  Google Scholar 

  37. Ams M, Marshall G D, Spence D J, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express, 2005, 13: 5676–5681

    Article  Google Scholar 

  38. Hayasaki Y, Sugimoto T, Takita A, et al. Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl Phys Lett, 2005, 87: 031101

    Article  Google Scholar 

  39. Booth M J, Schwertner M, Wilson T, et al. Predictive aberration correction for multilayer optical data storage. Appl Phys Lett, 2006, 88: 031109

    Article  Google Scholar 

  40. Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating airy beams. Phys Rev Lett, 2007, 99: 213901

    Article  Google Scholar 

  41. Yamaji M, Kawashima H, Suzuki J, et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl Phys Lett, 2008, 93: 041116

    Article  Google Scholar 

  42. Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett, 2010, 97: 081102

    Article  Google Scholar 

  43. Hendriks A, Naidoo D, Roux F S, et al. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator. In: Proceedings Volume 8490, Laser Beam Shaping XIII. San Diego, 2012. 849006

  44. Mathis A, Courvoisier F, Froehly L, et al. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl Phys Lett, 2012, 101: 071110

    Article  Google Scholar 

  45. Ren H, Lin H, Li X, et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Opt Lett, 2014, 39: 1621–1624

    Article  Google Scholar 

  46. Wang A, Jiang L, Li X, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv Mater, 2015, 27: 6238–6243

    Article  Google Scholar 

  47. Yang D, Liu L, Gong Q, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol Rapid Commun, 2019, 40: 1900041

    Article  Google Scholar 

  48. Geng Q, Wang D, Chen P, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun, 2019, 10: 2179

    Article  Google Scholar 

  49. Toombs J T, Luitz M, Cook C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 2022, 376: 308–312

    Article  Google Scholar 

  50. Weiner A M. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum, 2000, 71: 1929–1960

    Article  Google Scholar 

  51. Marcinkevičius A, Mizeikis V, Juodkazis S, et al. Effect of refractive index-mismatch on laser microfabrication in silica glass. Appl Phys A, 2003, 76: 257–260

    Article  Google Scholar 

  52. Hnatovsky C, Taylor R S, Simova E, et al. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations. J Appl Phys, 2005, 98: 013517

    Article  Google Scholar 

  53. Sun Q, Jiang H, Liu Y, et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J Opt A-Pure Appl Opt, 2005, 7: 655–659

    Article  Google Scholar 

  54. Salter P S, Woolley M J, Morris S M, et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation. Opt Lett, 2018, 43: 5993–5996

    Article  Google Scholar 

  55. Wang P, Qi J, Liu Z, et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Sci Rep, 2017, 7: 41211

    Article  Google Scholar 

  56. Huang L, Salter P S, Payne F, et al. Aberration correction for direct laser written waveguides in a transverse geometry. Opt Express, 2016, 24: 10565

    Article  Google Scholar 

  57. Tartan C C, Salter P S, Wilkinson T D, et al. Generation of 3-dimensional polymer structures in liquid crystalline devices using direct laser writing. RSC Adv, 2017, 7: 507–511

    Article  Google Scholar 

  58. Götte N, Winkler T, Meinl T, et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics. Optica, 2016, 3: 389–395

    Article  Google Scholar 

  59. Manousidaki M, Papazoglou D G, Farsari M, et al. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3: 525–530

    Article  Google Scholar 

  60. Efremidis N K, Chen Z, Segev M, et al. Airy beams and accelerating waves: An overview of recent advances. Optica, 2019, 6: 686

    Article  Google Scholar 

  61. Häfner T, Strauß J, Roider C, et al. Tailored laser beam shaping for efficient and accurate microstructuring. Appl Phys A, 2018, 124: 111

    Article  Google Scholar 

  62. Nodop D, Ruecker J, Waechter S, et al. Hyperbolic phase function used in a spatial light modulator for flat top focus generation. Opt Lett, 2019, 44: 2169–2172

    Article  Google Scholar 

  63. Na Y, Ko D K. Amplitude-modulated log-polar coordinate mapping for generating top-hat line-shaped beams with steep edges and a high aspect ratio. Optics Laser Tech, 2021, 134: 106587

    Article  Google Scholar 

  64. Li Z X, Ruan Y P, Chen P, et al. Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited]. Chin Opt Lett, 2021, 19: 112601

    Article  Google Scholar 

  65. Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams. Opt Lett, 2008, 33: 207–209

    Article  Google Scholar 

  66. Ackermann L, Roider C, Schmidt M. Uniform and efficient beam shaping for high-energy lasers. Opt Express, 2021, 29: 17997–18009

    Article  Google Scholar 

  67. Pozzi P, Maddalena L, Ceffa N, et al. Fast calculation of computer generated holograms for 3D photostimulation through compressive-sensing Gerchberg-Saxton algorithm. Methods Protoc, 2019, 2: 2

    Article  Google Scholar 

  68. Zhu Y, Zhang C, Gong Y, et al. Realization of flexible and parallel laser direct writing by multifocal spot modulation. Opt Express, 2021, 29: 8698–8709

    Article  Google Scholar 

  69. Saha S K, Wang D, Nguyen V H, et al. Scalable submicrometer additive manufacturing. Science, 2019, 366: 105–109

    Article  Google Scholar 

  70. Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater, 2014, 26: 5031–5036

    Article  Google Scholar 

  71. Li B, Li X, Zhao R, et al. Polarization multiplexing terahertz meta-surfaces through spatial femtosecond laser-shaping fabrication. Adv Opt Mater, 2020, 8: 2000136

    Article  Google Scholar 

  72. Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl, 2014, 3: e213

    Article  Google Scholar 

  73. Igasaki Y, Li F, Yoshida N, et al. High efficiency electrically-addressable phase-only spatial light modulator. Opt Rev, 1999, 6: 339–344

    Article  Google Scholar 

  74. Auyeung R C Y, Kim H, Charipar N A, et al. Laser forward transfer based on a spatial light modulator. Appl Phys A, 2011, 102: 21–26

    Article  Google Scholar 

  75. Hu Y, Liu X, Jin M, et al. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX, 2021, 2: 10

    Article  Google Scholar 

  76. Zhan Q. Cylindrical vector beams: From mathematical concepts to applications. Adv Opt Photon, 2009, 1: 1–57

    Article  Google Scholar 

  77. Man Z, Xi Z, Yuan X, et al. Dual coaxial longitudinal polarization vortex structures. Phys Rev Lett, 2020, 124: 103901

    Article  Google Scholar 

  78. Yang L, Qian D, Xin C, et al. Direct laser writing of complex microtubes using femtosecond vortex beams. Appl Phys Lett, 2017, 110: 221103

    Article  Google Scholar 

  79. Pan D, Liu S, Li J, et al. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary-force-assisted self-assembly. Adv Funct Mater, 2022, 32: 2106917

    Article  Google Scholar 

  80. Ni J, Hu Y, Liu S, et al. Controllable double-helical microstructures by photonic orbital angular momentum for chiroptical response. Opt Lett, 2021, 46: 1401–1404

    Article  Google Scholar 

  81. Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl Phys Lett, 2013, 102: 084103

    Article  Google Scholar 

  82. Ni J, Wang C, Zhang C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl, 2017, 6: e17011

    Article  Google Scholar 

  83. Jedrkiewicz O, Kumar S, Sotillo B, et al. Pulsed Bessel beam-induced microchannels on a diamond surface for versatile microfluidic and sensing applications. Opt Mater Express, 2017, 7: 1962–1970

    Article  Google Scholar 

  84. Bhuyan M K, Velpula P K, Colombier J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl Phys Lett, 2014, 104: 021107

    Article  Google Scholar 

  85. Courvoisier F, Zhang J, Bhuyan M K, et al. Applications of femtosecond Bessel beams to laser ablation. Appl Phys A, 2013, 112: 29–34

    Article  Google Scholar 

  86. Rapp L, Meyer R, Furfaro L, et al. High speed cleaving of crystals with ultrafast Bessel beams. Opt Express, 2017, 25: 9312–9317

    Article  Google Scholar 

  87. Tsai W J, Gu C J, Cheng C W, et al. Internal modification for cutting transparent glass using femtosecond Bessel beams. Opt Eng, 2014, 53: 051503

    Article  Google Scholar 

  88. Yang L, Ji S, Xie K, et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt Express, 2017, 25: 8144–8157

    Article  Google Scholar 

  89. Cheng H, Golvari P, Xia C, et al. High-throughput microfabrication of axially tunable helices. Photon Res, 2022, 10: 303–315

    Article  Google Scholar 

  90. Yang L, Qian D, Xin C, et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt Lett, 2017, 42: 743–746

    Article  Google Scholar 

  91. Sohr D, Thomas J U, Skupin S. Using Airy beams for combined glass cutting and edge shaping. In: Proceedings Volume 11989, Laser-based Micro- and Nanoprocessing XVI. San Francisco, 2022. 35–39

  92. Sohr D, Thomas J U, Skupin S. All-round: Combining laser cutting and edge shaping of glass. Eur Phys J Spec Top, 2022, doi: https://doi.org/10.1140/epjs/s11734-022-00672-w

  93. Ungaro C, Liu A. Single-pass cutting of glass with a curved edge using ultrafast curving bessel beams and oblong airy beams. Optics Laser Tech, 2021, 144: 107398

    Article  Google Scholar 

  94. Flamm D, Kleiner J, Kaiser M, et al. Ultrafast laser cutting of transparent materials: The trend towards tailored edges and curved surfaces. In: Proceedings Volume 11674, Laser-based Micro- and Nanoprocessing XV. 2021. 73–81

  95. Stone A, Jain H, Dierolf V, et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating. J Opt Soc Am B, 2013, 30: 1234–1240

    Article  Google Scholar 

  96. Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express, 2010, 18: 21090–21099

    Article  Google Scholar 

  97. Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photon, 2008, 2: 219–225

    Article  Google Scholar 

  98. Huot N, Stoian R, Mermillod-Blondin A, et al. Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass. Opt Express, 2007, 15: 12395–12408

    Article  Google Scholar 

  99. Booth M J, Neil M A A, Wilson T. Aberration correction for confocal imaging in refractive-index-mismatched media. J Microsc, 1998, 192: 90–98

    Article  Google Scholar 

  100. Jesacher A, Marshall G D, Wilson T, et al. Adaptive optics for direct laser writing with plasma emission aberration sensing. Opt Express, 2010, 18: 656–661

    Article  Google Scholar 

  101. Mauclair C, Mermillod-Blondin A, Huot N, et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt Express, 2008, 16: 5481–5492

    Article  Google Scholar 

  102. Hasegawa S, Hayasaki Y. Femtosecond laser processing with adaptive optics based on convolutional neural network. Optics Lasers Eng, 2021, 141: 106563

    Article  Google Scholar 

  103. Cui J, Antonello J, Kirkpatrick A R, et al. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media. Opt Express, 2022, 30: 11809

    Article  Google Scholar 

  104. Bisch N, Guan J, Booth M J, et al. Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Appl Phys A, 2019, 125: 364

    Article  Google Scholar 

  105. Zhang H, Xu J, Li H, et al. Stealth dicing of 1-mm-thick glass with aberration-free axial multi-focus beams. Opt Lett, 2022, 47: 3003–3006

    Article  Google Scholar 

  106. Ruiz de la Cruz A, Ferrer A, Gawelda W, et al. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing. Opt Express, 2009, 17: 20853–20859

    Article  Google Scholar 

  107. Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt Express, 2010, 18: 12136–12143

    Article  Google Scholar 

  108. Huang L, Salter P, Karpiński M, et al. Waveguide fabrication in KDP crystals with femtosecond laser pulses. Appl Phys A, 2015, 118: 831–836

    Article  Google Scholar 

  109. Liao Y, Qi J, Wang P, et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam. Sci Rep, 2016, 6: 28790

    Article  Google Scholar 

  110. Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett, 2016, 109: 031109

    Article  Google Scholar 

  111. Roth G L, Rung S, Esen C, et al. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping. Opt Express, 2020, 28: 5801–5811

    Article  Google Scholar 

  112. Horváth B, Ormos P, Kelemen L. Nearly aberration-free multiphoton polymerization into thick photoresist layers. Micromachines, 2017, 8: 219

    Article  Google Scholar 

  113. Jenne M, Flamm D, Ouaj T, et al. High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams. Opt Lett, 2018, 43: 3164–3167

    Article  Google Scholar 

  114. Salter P S, Booth M J. Focussing over the edge: Adaptive subsurface laser fabrication up to the sample face. Opt Express, 2012, 20: 19978–19989

    Article  Google Scholar 

  115. Flamm D, Kaiser M, Feil M, et al. Protecting the edge: Ultrafast laser modified C-shaped glass edges. J Laser Appl, 2022, 34: 012014

    Article  Google Scholar 

  116. Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon Rev, 2013, 7: 22–44

    Article  Google Scholar 

  117. Balena A, Bianco M, Pisanello F, et al. Recent advances on high-speed and holographic two-photon direct laser writing. Adv Funct Mater, 2023, doi: https://doi.org/10.1002/adfm.202211773

  118. Li Z Z, Li X Y, Yu F, et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Opt Lett, 2021, 46: 520–523

    Article  Google Scholar 

  119. Indrišiūnas S, Gedvilas M. Control of the wetting properties of stainless steel by ultrashort laser texturing using multi-parallel beam processing. Optics Laser Tech, 2022, 153: 108187

    Article  Google Scholar 

  120. Liu D, Kuang Z, Perrie W, et al. High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl Phys B, 2010, 101: 817–823

    Article  Google Scholar 

  121. Kelemen L, Valkai S, Ormos P. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt Express, 2007, 15: 14488–14497

    Article  Google Scholar 

  122. Kato J, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett, 2005, 86: 044102

    Article  Google Scholar 

  123. Tahmasebi O, Abdolali A, Rajabalipanah H, et al. Parallel temporal signal processing enabled by polarization-multiplexed programmable THz metasurfaces. Opt Express, 2022, 30: 45221–45232

    Article  Google Scholar 

  124. Kim D, Keesling A, Omran A, et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt Lett, 2019, 44: 3178–3181

    Article  Google Scholar 

  125. Silvennoinen M, Kaakkunen J, Paivasaari K, et al. Parallel femtosecond laser ablation with individually controlled intensity. Opt Express, 2014, 22: 2603–2608

    Article  Google Scholar 

  126. Zhang H, Hasegawa S, Takahashi H, et al. In-system optimization of a hologram for high-stability parallel laser processing. Opt Lett, 2020, 45: 3344

    Article  Google Scholar 

  127. Fan H, Cao X W, Wang L, et al. Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse. Opt Lett, 2019, 44: 5149–5152

    Article  Google Scholar 

  128. Gerchberg R W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik, 1972, 35: 237–246

    Google Scholar 

  129. Bengtsson J. Kinoform design with an optimal-rotation-angle method. Appl Opt, 1994, 33: 6879–6884

    Article  Google Scholar 

  130. Cai M, Tu C, Zhang H, et al. Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields. Opt Express, 2013, 21: 31469–31482

    Article  Google Scholar 

  131. Zhang C, Hanchang Y, Wang C, et al. Real-time capture of single particles in controlled flow by a rapidly generated foci array with adjustable intensity and pattern. Opt Lett, 2021, 46: 5308–5311

    Article  Google Scholar 

  132. Xu B, Du W Q, Li J W, et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci Rep, 2016, 6: 19989

    Article  Google Scholar 

  133. Zhang Z Y, Zhang C C, Hu Y L, et al. Highly uniform parallel microfabrication using a large numerical aperture system. Appl Phys Lett, 2016, 109: 021109

    Article  Google Scholar 

  134. Cao X W, Chen Q D, Zhang L, et al. Single-pulse writing of a concave microlens array. Opt Lett, 2018, 43: 831–834

    Article  Google Scholar 

  135. Hasegawa S, Ito H, Toyoda H, et al. Massively parallel femtosecond laser processing. Opt Express, 2016, 24: 18513–18524

    Article  Google Scholar 

  136. Zhang H, Hasegawa S, Toyoda H, et al. Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing. Optics Lasers Eng, 2022, 151: 106884

    Article  Google Scholar 

  137. di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express, 2007, 15: 1913–1922

    Article  Google Scholar 

  138. Hu Y L, Chen Y H, Ma J Q, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Appl Phys Lett, 2013, 103: 141112

    Article  Google Scholar 

  139. Wang Z, Jiang L, Li X, et al. High efficiency and scalable fabrication of fresnel zone plates using holographic femtosecond pulses. Nano-photonics, 2022, 11: 3081–3091

    Google Scholar 

  140. Zhang C, Hu Y, Du W, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci Rep, 2016, 6: 33281

    Article  Google Scholar 

  141. Kuang Z, Li J, Edwardson S, et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Optics Lasers Eng, 2015, 70: 1–5

    Article  Google Scholar 

  142. Huang L, Xu K, Yuan D, et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat Commun, 2022, 13: 5823

    Article  Google Scholar 

  143. Wang C, Yang L, Hu Y, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano, 2019, 13: 4667–4676

    Article  Google Scholar 

  144. Kelly B E, Bhattacharya I, Heidari H, et al. Volumetric additive manufacturing via tomographic reconstruction. Science, 2019, 363: 1075–1079

    Article  Google Scholar 

  145. Zhang C, Hu Y, Li J, et al. A rapid two-photon fabrication of tube array using an annular Fresnel lens. Opt Express, 2014, 22: 3983–3990

    Article  Google Scholar 

  146. Zhang J, Pégard N, Zhong J, et al. 3D computer-generated holography by non-convex optimization. In: Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online). Optica Publishing Group, 2017. paper MTu2C.5

  147. Hossein Eybposh M, Caira N W, Atisa M, et al. DeepCGH: 3D computer-generated holography using deep learning. Opt Express, 2020, 28: 26636–26650

    Article  Google Scholar 

  148. Zhang Y, Chang C, Yuan C, et al. Composite generation of independently controllable multiple three-dimensional vector focal curve beams. Optics Commun, 2019, 450: 296–303

    Article  Google Scholar 

  149. Hnatovsky C, Shvedov V, Krolikowski W, et al. Revealing local field structure offocused ultrashort pulses. Phys Rev Lett, 2011, 106: 123901

    Article  Google Scholar 

  150. García-Martínez P, Marco D, Martínez-Fuentes J L, et al. Efficient on-axis SLM engineering of optical vector modes. Optics Lasers Eng, 2020, 125: 105859

    Article  Google Scholar 

  151. Chen J, Wan C, Zhan Q. Vectorial optical fields: Recent advances and future prospects. Sci Bull, 2018, 63: 54–74

    Article  Google Scholar 

  152. Han W, Yang Y, Cheng W, et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt Express, 2013, 21: 20692

    Article  Google Scholar 

  153. Chen J, Wan C, Kong L J, et al. Tightly focused optical field with controllable photonic spin orientation. Opt Express, 2017, 25: 19517–19528

    Article  Google Scholar 

  154. Zhang Y, Chen J, Bai C, et al. Dynamical generation of multiple focal spot pairs with controllable position and polarization. Opt Express, 2020, 28: 26706–26716

    Article  Google Scholar 

  155. Zhou Y, Li X, Cai Y, et al. Compact optical module to generate arbitrary vector vortex beams. Appl Opt, 2020, 59: 8932–8938

    Article  Google Scholar 

  156. Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt, 2018, 20: 123001

    Article  Google Scholar 

  157. Liu S, Qi S, Zhang Y, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon Res, 2018, 6: 228

    Article  Google Scholar 

  158. Hasegawa S, Hayasaki Y. Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt Express, 2013, 21: 12987–12995

    Article  Google Scholar 

  159. Nivas J J J, He S, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep, 2015, 5: 17929

    Article  Google Scholar 

  160. Sakakura M, Lei Y, Wang L, et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci Appl, 2020, 9: 15

    Article  Google Scholar 

  161. Lei Y, Sakakura M, Wang L, et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica, 2021, 8: 1365–1371

    Article  Google Scholar 

  162. Wang L, Fan H, Li Z Z, et al. Fabrication of time capsules by femtosecond laser-induced birefringence (in Chinese). Acta Photon Sin, 2021, 50: 58–65

    Google Scholar 

  163. Zhang J, Gecevičius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett, 2014, 112: 033901

    Article  Google Scholar 

  164. Chen Z Y, Wei Z, Chen R, et al. Focus shaping of high numerical aperture lens using physics-assisted artificial neural networks. Opt Express, 2021, 29: 13011–13024

    Article  Google Scholar 

  165. Xin W, Zhang Q, Gu M. Inverse design of optical needles with central zero-intensity points by artificial neural networks. Opt Express, 2020, 28: 38718–38732

    Article  Google Scholar 

  166. Ren H, Shao W, Li Y, et al. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv, 2020, 6: eaaz4261

    Article  Google Scholar 

  167. Lee J, Jeong J, Cho J, et al. Deep neural network for multi-depth hologram generation and its training strategy. Opt Express, 2020, 28: 27137–27154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2021YFB2802000), the National Natural Science Foundation of China (Grant Nos. 61827826, 62175086, 62131018), the Natural Science Foundation of Jilin Province (Grant No. 20220101107JC), and the Education Department of Jilin Province (Grant No. JJKH20221003KJ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, X., Liu, Z., Xu, Y. et al. Spatial light modulation for femtosecond laser manufacturing: Current developments and challenges. Sci. China Technol. Sci. 67, 60–72 (2024). https://doi.org/10.1007/s11431-023-2420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2420-x

Navigation