Skip to main content
Log in

Mechanical-electrical synergy damage effect on GaN HEMT under high-power microwave

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

High-power microwave damage to enhanced-mode GaN high electron mobility transistors (HEMT) is studied considering the mechanical-electrical synergy effect due to the strong piezoelectric properties of GaN, which has a wurtzite crystal structure. Based on the piezoelectric constitutive equation, the mechanical and electrical energies were equivalently coupled, and the effective numerical model was built in the simulation software The results indicated that a part of the electrical energy was stored in the device as a form of elastic energy, causing the burnout time of GaN HEMT to be extended. The effects of different injection voltages and frequencies were analyzed, and the results revealed that elastic energy plays a different role during the process of device damage. These results are of great significance for the design of GaN HEMTs with better reliability in harsh electromagnetic environments and for improving their protection design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung J W, Hoke W E, Chumbes E M, et al. AlGaN/GaN HEMT with 300-GHz fmax. IEEE Electron Device Lett, 2010, 31: 195–197

    Article  Google Scholar 

  2. Du J J, Xu S R, Peng R S, et al. Enhancement of optical characteristic of InGaN/GaN multiple quantum-well structures by self-growing air voids. Sci China Tech Sci, 2021, 64: 1583–1588

    Article  Google Scholar 

  3. Chen D, Yuan P, Zhao S, et al. Wide-range-adjusted threshold voltages for E-mode AlGaN/GaN HEMT with a p-SnO cap gate. Sci China Mater, 2022, 65: 795–802

    Article  Google Scholar 

  4. Wu Y F, Kapolnek D, Ibbetson J P, et al. Very-high power density AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 2001, 48: 586–590

    Article  Google Scholar 

  5. Asif Khan M, Kuznia J N, Olson D T, et al. Microwave performance of a 0.25 µm gate AlGaN/GaN heterostructure field effect transistor. Appl Phys Lett, 1994, 65: 1121–1123

    Article  Google Scholar 

  6. Trew R J, Bilbro G L, Kuang W, et al. Microwave AlGaN/GaN HFETs. IEEE Microwave, 2005, 6: 56–66

    Article  Google Scholar 

  7. Han J, Crawford M H, Shul R J, et al. AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl Phys Lett, 1998, 73: 1688–1690

    Article  Google Scholar 

  8. Xu F J, Shen B. Progress in high crystalline quality AlN grown on sapphire for high-efficiency deep ultraviolet light-emitting diodes. Jpn J Appl Phys, 2022, 61: 040502

    Article  Google Scholar 

  9. Rasel M A J, Stepanoff S P, Wetherington M, et al. Thermo-mechanical aspects of gamma irradiation effects on GaN HEMTs. Appl Phys Lett, 2022, 120: 124101

    Article  Google Scholar 

  10. Schwarz C, Yadav A, Shatkhin M, et al. Gamma irradiation impact on electronic carrier transport in AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 2013, 102: 062102

    Article  Google Scholar 

  11. Nguyen H Q, Nguyen T, Tanner P, et al. Piezotronic effect in a normally off p-GaN/AlGaN/GaN HEMT toward highly sensitive pressure sensor. Appl Phys Lett, 2021, 118: 242104

    Article  Google Scholar 

  12. Liu Y, Ruden P P, Xie J, et al. Effect of hydrostatic pressure on the dc characteristics of AlGaN/GaN heterojunction field effect transistors. Appl Phys Lett, 2006, 88: 013505

    Article  Google Scholar 

  13. Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys, 2000, 87: 334–344

    Article  Google Scholar 

  14. Jeganathan K, Ide T, Shimizu M, et al. Two-dimensional electron gases induced by polarization charges in AlN/GaN heterostructure grown by plasma-assisted molecular-beam epitaxy. J Appl Phys, 2003, 94: 3260–3263

    Article  Google Scholar 

  15. Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys, 1999, 85: 3222–3233

    Article  Google Scholar 

  16. del Alamo J A, Joh J. GaN HEMT reliability. Microelectron Reliability, 2009, 49: 1200–1206

    Article  Google Scholar 

  17. Hyungtak K, Thompson R M, Tilak V, et al. Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation. IEEE Electron Device Lett, 2003, 24: 421–423

    Article  Google Scholar 

  18. Meneghesso G, Verzellesi G, Danesin F, et al. Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans Device Mater Relib, 2008, 8: 332–343

    Article  Google Scholar 

  19. Valizadeh P, Pavlidis D. Effects of RF and DC stress on AlGaN/GaN MODFETs: A low-frequency noise-based investigation. IEEE Trans Device Mater Relib, 2005, 5: 555–563

    Article  Google Scholar 

  20. Joh J, del Alamo J A. Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Device Lett, 2008, 29: 287–289

    Article  Google Scholar 

  21. Chen W W, Ma X H, Hou B, et al. Impacts of SiN passivation on the degradation modes of AlGaN/GaN high electron mobility transistors under reverse-bias stress. Appl Phys Lett, 2014, 105: 173507

    Article  Google Scholar 

  22. der Maur M A, Di Carlo A. AlGaN/GaN HEMT degradation: An electro-thermo-mechanical simulation. IEEE Trans Electron Devices, 2013, 60: 3142–3148

    Article  Google Scholar 

  23. Ashok A, Vasileska D, Goodnick S M, et al. Importance of the gate-dependent polarization charge on the operation of GaN HEMTs. IEEE Trans Electron Devices, 2009, 56: 998–1006

    Article  Google Scholar 

  24. Joh J, Alamo J A. Mechanisms for electrical degradation of GaN high-electron mobility transistors. In: International Electron Devices Meeting. San Francisco, 2006. 1–4

  25. Chang C T, Hsiao S K, Chang E Y, et al. Changes of electrical characteristics for AlGaN/GaN HEMTs under uniaxial tensile strain. IEEE Electron Device Lett, 2009, 30: 213–215

    Article  Google Scholar 

  26. Liu Y, Chai C, Shi C, et al. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor. J Semicond, 2016, 37: 124002

    Article  Google Scholar 

  27. Qin Y, Chai C, Li F, et al. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT. Micromachines, 2022, 13: 106

    Article  Google Scholar 

  28. Zhou L, Shan Z W, Lin L, et al. Electro-thermal-stress interaction of GaN HEMT breakdown induced by high power microwave pulses. In: Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Shenzhen, 2016. 642–644

  29. Greco G, Iucolano F, Roccaforte F. Review of technology for normally-off HEMTs with p-GaN gate. Mater Sci Semiconductor Process, 2018, 78: 96–106

    Article  Google Scholar 

  30. Korte S, Camp M, Garbe H. Hardware and software simulation of transient pulse impact on integrated circuits. In: International Symposium on Electromagnetic Compatibility (EMC). Chicago, 2005. 489–494

  31. Lebon G, Machrafi H, Grmela M, et al. An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc R Soc A, 2011, 467: 3241–3256

    Article  MathSciNet  MATH  Google Scholar 

  32. Tyagi M S, Van Overstraeten R. Minority carrier recombination in heavily-doped silicon. Solid-State Electron, 1983, 26: 577–597

    Article  Google Scholar 

  33. Goebel H, Hoffmann K. Full dynamic power diode model including temperature behavior for use in circuit simulators. In: Proceedings of the 4th International Symposium on Power Semiconductor Devices and Ics. Tokyo, 1992. 130–135

  34. Anwar A F M, Webster R T, Smith K V. Bias induced strain in AlGaN/GaN heterojunction field effect transistors and its implications. Appl Phys Lett, 2006, 88: 203510

    Article  Google Scholar 

  35. Jogai B, Albrecht J D, Pan E. Electromechanical coupling in freestanding AlGaN/GaN planar structures. J Appl Phys, 2003, 94: 6566–6573

    Article  Google Scholar 

  36. Liu Y, Chai C C, Yang Y T, et al. Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave. Chin Phys B, 2016, 25: 048504

    Article  Google Scholar 

  37. Yu X H, Chai C C, Liu Y, et al. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor. Chin Phys B, 2015, 24: 048502

    Article  Google Scholar 

  38. Li Q W, Sun J, Li F X, etal. C band microwave damage characteristics of pseudomorphic high electron mobility transistor. Chin Phys B, 2021, 30: 098502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianLong Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 61974116), the Innovation Fund of Xidian University (Grant No. YJSJ23019), the Fundamental Research Funds for the Central Universities (Grant No. ZYTS23029), and the China Postdoctoral Science Foundation (Grant No. 2019M663927XB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chai, C., Zhao, T. et al. Mechanical-electrical synergy damage effect on GaN HEMT under high-power microwave. Sci. China Technol. Sci. 66, 2373–2380 (2023). https://doi.org/10.1007/s11431-023-2407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2407-3

Navigation