Skip to main content
Log in

Temperature dependence of the mechanical and electrical properties of soft-doped lead zirconate titanate under compression and impact

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Compared to a quasistatic environment, the electromechanical response of piezoelectric ceramics exhibits a considerably nonlinear behavior when subjected to impact. If the effect of ambient temperature is further considered, then the situation becomes more unpredictable. The thermal, mechanical, and electrical properties of soft-doped piezoelectric ceramics (PZT-5H) under compression and impact conditions were analyzed in the temperature range of −60°C to 200°C (below Curie temperature). The experimental results indicate that the fracture strength of PZT-5H has an extreme value near room temperature. The dynamic piezoelectric coefficient is strongly temperature dependent and has a maximum value near 100°C because of the “electric devil’s staircase effect” between polarization and domain switching threshold. These temperature-dependent data will enable the accurate prediction of the dynamic performance of devices by computer simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Z, Yang J, Cao J, et al. A PMNN-PZT piezoceramic based mag-neto-mechano-electric coupled energy harvester. Adv Funct Mater, 2022, 32: 2111140

    Article  Google Scholar 

  2. Dong Y, Yue Q, Cheng D, et al. Ultrasonic transducer with BiScO3-PbTiO3-based ceramics of operating temperature over 400°C. Sens Actuat A-Phys, 2022, 340: 113528

    Article  Google Scholar 

  3. Lv P, Qian J, Yang C, et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy, 2022, 97: 107182

    Article  Google Scholar 

  4. Liu Y Y, Li J Y. Multiferroics: Looking back and going forward. Sci China Tech Sci, 2020, 63: 2735–2736

    Article  Google Scholar 

  5. Pan C, Feng A, Shi C, et al. Construction, modeling and experiment of a resonant-type piezoelectric impact motor based on inertial drive mechanism. Smart Mater Struct, 2021, 30: 095027

    Article  Google Scholar 

  6. Wang R, Tang E, Yang G, et al. Dynamic fracture behavior of piezoelectric ceramics under impact: Force-electric response and electrical breakdown. J Eur Ceramic Soc, 2021, 41: 139–150

    Article  Google Scholar 

  7. Guo Y, Mi H, Habibi M. Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system. Mech Syst Signal Pr, 2021, 157: 107723

    Article  Google Scholar 

  8. Shkuratov S I, Baird J, Talantsev E F, et al. Miniature 100-kV explosive-driven prime power sources based on transverse shock-wave depolarization of PZT 95/5 ferroelectric ceramics. IEEE Trans Plasma Sci, 2012, 40: 2512–2516

    Article  Google Scholar 

  9. Tan Q, Viehland D. Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics. J Am Ceramic Soc, 1998, 81: 328–336

    Article  Google Scholar 

  10. Wang D, Fotinich Y, Carman G P. Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J Appl Phys, 1998, 83: 5342–5350

    Article  Google Scholar 

  11. Weaver P M, Stevenson T, Quast T, et al. High temperature measurement and characterisation of piezoelectric properties. J Mater Sci-Mater Electron, 2015, 26: 9268–9278

    Article  Google Scholar 

  12. Zhuang Z Q, Haun M J, Jang S J, et al. Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics. IEEE Trans Ultrason Ferroelect Freq Contr, 1989, 36: 413–416

    Article  Google Scholar 

  13. Kamiya T, Mishima R, Tsurumi T, et al. Mechanism of temperature dependence of piezoelectric properties for Pb(Zr, Ti)O3. Jpn J Appl Phys, 1993, 32: 4223

    Article  Google Scholar 

  14. Georges Sabat R, Mukherjee B K, Ren W, et al. Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J Appl Phys, 2007, 101: 064111

    Article  Google Scholar 

  15. Seveyrat L, Lemercier M, Guiffard B, et al. Temperature dependence of macroscopic and microscopic PZT properties studied by thermo-mechanical analysis, dielectric measurements and X-ray diffraction. Ceramics Int, 2009, 35: 45–49

    Article  Google Scholar 

  16. Seo Y H, Vögler M, Isaia D, et al. Temperature-dependent R-curve behavior of Pb(Zr1−xTix)O3. Acta Mater, 2013, 61: 6418–6427

    Article  Google Scholar 

  17. Maiwa H, Kim S H, Ichinose N. Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films. Appl Phys Lett, 2003, 83: 4396–4398

    Article  Google Scholar 

  18. Fu R, Zhang T Y. Influences of temperature and electric field on the bending strength oflead zirconate titanate ceramics. Acta Mater, 2000, 48: 1729–1740

    Article  Google Scholar 

  19. Hooker M W. Properties of PZT-based piezoelectric ceramics between −150 and 250°C. NASA Contractor Report, Hampton, 1998

  20. Kan A, Onishi R, Ohashi S, et al. Comprehensive analysis of the temperature dependence of the crystal structure of (1−x)K0.5Na0.5-NbO3-xBa(Li1/4Nb3/4)O3 piezoelectric ceramics. J Mater Chem C, 2022, 10: 6444–6455

    Article  Google Scholar 

  21. Kaeswurm B, Schader F H, Webber K G. Ferroelectric, ferroelastic, piezoelectric, and dielectric properties of lead zirconate titanate from -150°C to 350°C. Ceramics Int, 2018, 44: 2358–2363

    Article  Google Scholar 

  22. Ehmke M C, Schader F H, Webber K G, et al. Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system. Acta Mater, 2014, 78: 37–45

    Article  Google Scholar 

  23. Webber K G, Aulbach E, Key T, et al. Temperature-dependent fer-roelastic switching of soft lead zirconate titanate. Acta Mater, 2009, 57: 4614–4623

    Article  Google Scholar 

  24. Burianova L, Hana P, Pustka M, et al. Non-linear properties of PZT ceramics in the wide temperature range. J Eur Ceramic Soc, 2005, 25: 2405–2409

    Article  Google Scholar 

  25. Marsilius M, Webber K G, Aulbach E, et al. Comparison of the temperature-dependent ferroelastic behavior of hard and soft lead zirconate titanate ceramics. J Am Ceramic Soc, 2010, 93: 2850–2856

    Article  Google Scholar 

  26. Gubinyi Z, Batur C, Sayir A, et al. Electrical properties of PZT piezoelectric ceramic at high temperatures. J Electroceram, 2008, 20: 95–105

    Article  Google Scholar 

  27. Chermant J L, Boitier G, Darzens S, et al. The creep mechanism of ceramic matrix composites at low temperature and stress, by a material science approach. J Eur Ceramic Soc, 2002, 22: 2443–2460

    Article  Google Scholar 

  28. Paik D S, Park S E, Shrout T R, et al. Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. J Mater Sci, 1999, 34: 469–473

    Article  Google Scholar 

  29. Yarlagadda S, Chan M H W, Lee H, et al. Low temperature thermal conductivity, heat capacity, and heat generation of PZT. J Intelligent Material Syst Struct, 1995, 6: 757–764

    Article  Google Scholar 

  30. Xue W. Research on the transformation and fracture mechanism of structural ceramics at cryogenic temperatures (in Chinese). Dissertation of Doctoral Degree. Beijing: Tsinghua University, 2013

    Google Scholar 

  31. Anand S, Arockiarajan A. Temperature dependent ferroelectric and ferroelastic behaviour of PZT wafers. Ceramics Int, 2016, 42: 15517–15529

    Article  Google Scholar 

  32. Cao W, Liu P, Chen Y, et al. Effect ofhysteresis of dipole on remnant polarization in ferroelectrics. Acta Phys Sin, 2016, 65: 137701

    Article  Google Scholar 

  33. Grupp D E, Goldman A M. Giant piezoelectric effect in strontium titanate at cryogenic temperatures. Science, 1997, 276: 392–394

    Article  Google Scholar 

  34. Lysne P C. Dielectric properties ofshock-wave-compressed PZT 95/5. J Appl Phys, 1977, 48: 1020–1023

    Article  Google Scholar 

  35. Nie H, Yang J, Chen X, et al. Mechanical induced electrical failure of shock compressed PZT95/5 ferroelectric ceramics. Curr Appl Phys, 2017, 17: 448–453

    Article  Google Scholar 

  36. Wang R, Tang E, Yang G, et al. Electromechanical behaviors of soft and hard PZTs under different compressive stress pulses. Mech Mater, 2020, 149: 103544

    Article  Google Scholar 

  37. Wang R, Tang E, Yang G, et al. Experimental research on dynamic response of PZT-5H under impact load. Ceramics Int, 2020, 46: 28682876

    Google Scholar 

  38. Wang R, Tang E, Yang G, et al. Electrical properties of PZT under high-pressure stress pulse: Effects of loading frequency and circuit load. Ceramics Int, 2022, 48: 2421–2430

    Article  Google Scholar 

  39. Tang E, He T, Han Y, et al. Influence of temperature on the electrical characteristic parameters and dynamic electro-mechanical behaviour of PZT-5H. Eur Phys J Plus, 2021, 136: 364

    Article  Google Scholar 

  40. Wang R, Tang E, Yang G, et al. Discharge characteristics of pre-polarized doped lead zirconate titanate under impact at room and high temperature. J Am Ceram Soc, 2022, 105: 2234–2247

    Article  Google Scholar 

  41. Li T, Lee P S. Piezoelectric energy harvesting technology: From materials, structures, to applications. Small Struct, 2022, 3: 2100128

    Article  Google Scholar 

  42. Xue W, Xie Z, Yi J, et al. Critical grain size and fracture toughness of 2mol.% yttria-stabilized zirconia at ambient and cryogenic temperatures. Scripta Mater, 2012, 67: 963–966

    Article  Google Scholar 

  43. Suzuki N, Uchida T, Suzuki K. Test method and strength characteristics of alumina ceramics at cryogenic temperatures. Cryogenics, 1998, 38: 363–366

    Article  Google Scholar 

  44. Arlt G. Twinning in ferroelectric and ferroelastic ceramics: Stress relief. J Mater Sci, 1990, 25: 2655–2666

    Article  Google Scholar 

  45. Rice R W, Freiman S W. Grain-size dependence of fracture energy in ceramics: II. A model for noncubic materials. J Am Ceramic Soc, 1981, 64: 350–354

    Article  Google Scholar 

  46. Li Z, Fu Z, Cai H, et al. Discovery of electric devil’s staircase in perovskite antiferroelectric. Sci Adv, 2022, 8: eabl9088

    Article  Google Scholar 

  47. Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater, 1995, 43: 2073–2084

    Article  Google Scholar 

  48. Cao W Q, Wang L H, Pan R K, et al. Polarization energy storage effect of ferroelectrics (in Chinese). Sci Sin Tech, 2019, 49: 930–938

    Article  Google Scholar 

  49. Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to RuiZhi Wang or EnLing Tang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12172232) and the scientific research support plan for igh-level talents introduced by Shenyang Ligong University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, Z., Tang, E. et al. Temperature dependence of the mechanical and electrical properties of soft-doped lead zirconate titanate under compression and impact. Sci. China Technol. Sci. 66, 3562–3573 (2023). https://doi.org/10.1007/s11431-023-2402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2402-2

Navigation