Skip to main content
Log in

Long-tailed object detection of kitchen waste with class-instance balanced detector

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Intelligent detection and classification of kitchen waste can promote ecological sustainability by replacing inefficient manual processes. However, the presence of non-degradable waste mixed in kitchen waste often follows a long-tailed distribution, making it challenging to train convolutional neural network-based object detectors, which results in the unsatisfactory detection of tail-class waste. To address this challenge, we propose a class-instance balanced detector (CIB-Det) for intelligent detection and classification of kitchen waste. CIB-Det implements two strategies for the loss function: the class-balanced strategy (CBS) and the instance-balanced strategy (IBS). The CBS focuses more on tail classes, and the IBS concentrates on hard-to-classify instances adaptively during training. Consequently, CIB-Det comprehensively and adaptively addresses the long-tailed issue. Our experiments on a real dataset of kitchen waste images support the effectiveness of CIB-Det for kitchen waste detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoornweg D, Bhada-Tata P. What a waste: A global review of solid waste management. World Bank’s Urban Development Local Govt, 2012

  2. Li J, Chen J, Sheng B, et al. Automatic detection and classification system of domestic waste via multimodel cascaded convolutional neural network. IEEE Trans Ind Inf, 2021, 18: 163–173

    Article  Google Scholar 

  3. Wang S, Wang J, Yang S, et al. From intention to behavior: Comprehending residents’ waste sorting intention and behavior formation process. Waste Manage, 2020, 113: 41–50

    Article  Google Scholar 

  4. Zhu M W, Ma H B, He J, et al. Metal recycling from waste memory modules efficiently and environmentally friendly by low-temperature alkali melts. Sci China Tech Sci, 2020, 63: 2275–2282

    Article  Google Scholar 

  5. Yue S, Shi X. Analysis of government roles in garbage classification. In: Proceedings of the IOP Conference Series: Earth and Environmental Science. London, 2020. 440: 042084

    Google Scholar 

  6. Yuan J H, Wu Y, Lu X, et al. Recent advances in deep learning based sentiment analysis. Sci China Tech Sci, 2020, 63: 1947–1970

    Article  Google Scholar 

  7. Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell, 2009, 32: 1627–1645

    Article  Google Scholar 

  8. Liu L, Ouyang W, Wang X, et al. Deep learning for generic object detection: A survey. Int J Comput Vis, 2020, 128: 261–318

    Article  MATH  Google Scholar 

  9. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016. 770–778

  10. Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60: 84–90

    Article  Google Scholar 

  11. Li S, Song W, Fang L, et al. Deep learning for hyperspectral image classification: An overview. IEEE Trans Geosci Remote Sens, 2019, 57: 6690–6709

    Article  Google Scholar 

  12. Han H G, Zhen Q, Yang H Y, et al. Mobile phone recognition method based on bilinear convolutional neural network. Sci China Tech Sci, 2021, 64: 2477–2484

    Article  Google Scholar 

  13. Cheng S Y, Chu B F, Zhong B N, et al. DRNet: Towards fast, accurate and practical dish recognition. Sci China Tech Sci, 2021, 64: 2651–2661

    Article  Google Scholar 

  14. Sermanet P, Eigen D, Zhang X, et al. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv: 1312.6229

  15. Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016. 779–788

  16. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. In: Proceedings of the European Conference on Computer Vision. Amsterdam, 2016. 21–37

  17. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colombia, 2014. 580–587

  18. Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015. 1440–1448

  19. Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, 2015

  20. Redmon J, Farhadi A. YOLOV3: An incremental improvement. arXiv: 1804.02767

  21. Fu C Y, Liu W, Ranga A, et al. DSSD: Deconvolutional single shot detector. arXiv: 1701.06659

  22. Cai Z, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018. 6154–6162

  23. He K, Gkioxari G, Dollar P, et al. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017. 2961–2969

  24. Domingo J L, Nadal M. Domestic waste composting facilities: A review of human health risks. Environ Int, 2009, 35: 382–389

    Article  Google Scholar 

  25. Karthikeyan M, Subashini T S, Jebakumar R. SSD based waste separation in smart garbage using augmented clustering NMS. Autom Softw Eng, 2021, 28: 1–7

    Article  Google Scholar 

  26. Lu G, Wang Y B, Xu H X, et al. Deep multimodal learning for municipal solid waste sorting. Sci China Tech Sci, 2022, 65: 324–335

    Article  Google Scholar 

  27. Zhang Q, Yang Q, Zhang X, et al. A multi-label waste detection model based on transfer learning. Resources Conservat Recycl, 2022, 181: 106235

    Article  Google Scholar 

  28. Bochkovskiy A, Wang C Y, Liao H Y M. YOLOV4: Optimal speed and accuracy of object detection. arXiv: 2004.10934

  29. Liu C, Xie N, Yang X, et al. A domestic trash detection model based on improved YOLOX. Sensors, 2022, 22: 6974

    Article  Google Scholar 

  30. Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding yolo series in 2021. arXiv: 2107.08430

  31. Feng C, Zhong Y, Gao Y, et al. TOOD: Task-aligned one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021. 3490–3499

  32. Tian Z, Shen C, Chen H, et al. FCOS: Fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019. 9627–9636

  33. Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge. Int J Comput Vis, 2010, 88: 303–338

    Article  Google Scholar 

  34. Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context. In: Proceedings ofthe European Conference on Computer Vision. Zurich, 2014. 740–755

  35. Oksuz K, Cam B C, Kalkan S, et al. Imbalance problems in object detection: A review. IEEE Trans Pattern Anal Mach Intell, 2020, 43: 3388–3415

    Article  Google Scholar 

  36. Ma J, Shao W, Ye H, et al. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multimedia, 2018, 20: 3111–3122

    Article  Google Scholar 

  37. Han J, Ding J, Li J, et al. Align deep features for oriented object detection. IEEE Trans Geosci Remote Sens, 2021, 60: 1–11

    Google Scholar 

  38. Yang X, Yan J, Feng Z, et al. R3det: Refined single-stage detector with feature refinement for rotating object. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, 2021. 35: 3163–3171

  39. Ding J, Xue N, Long Y, et al. Learning roi transformer for oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019. 2849–2858

  40. Xie X, Cheng G, Wang J, et al. Oriented R-CNN for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021. 3520–3529

  41. Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017. 2117–2125

  42. Wang Y X, Ramanan D, Hebert M. Learning to model the tail. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Long Beach, 2017

  43. Huang C, Li Y, Loy C C, et al. Learning deep representation for im-balanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016. 5375–5384

  44. Cui Y, Jia M, Lin T Y, et al. Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019. 9268–9277

  45. Zhang X, Fang Z, Wen Y, et al. Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017. 5409–5418

  46. Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision. Honolulu, 2017. 2980–2988

  47. Frankle J, Schwab D J, Morcos A S. The early phase of neural network training. arXiv: 2002.10365

  48. Xu Y, Fu M, Wang Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans Pattern Anal Mach Intell, 2020, 43: 1452–1459

    Article  Google Scholar 

  49. Sato I, Nishimura H, Yokoi K. APAC: Augmented pattern classification with neural networks. arXiv: 1505.03229

  50. Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett, 2006, 27: 861–874

    Article  Google Scholar 

  51. Zhou Y, Yang X, Zhang G, et al. Mmrotate: A rotated object detection benchmark using pytorch. arXiv: 2204.13317

  52. Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Miami, 2009. 248–255

  53. Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, 2022. 11976–11986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiHan Ouyang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC1910402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Tang, Q., Ouyang, L. et al. Long-tailed object detection of kitchen waste with class-instance balanced detector. Sci. China Technol. Sci. 66, 2361–2372 (2023). https://doi.org/10.1007/s11431-023-2400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2400-1

Keywords

Navigation