Skip to main content
Log in

Flow boiling heat transfer in copper foam fin microchannels with different fin widths using R134a

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Heat sinks of copper foam fin microchannels are developed to deal with cooling challenges. The heat sinks consist of fins made of copper foam and channels. The channels are 0.5 mm in width and 1 mm in height, and the fins are 0.5 and 2.0 mm in width. Flow boiling experiments are conducted using R134a at subcooled and saturated inlet conditions. The heat flux is between 22 and 172 W/cm2, and the mass flux ranges from 264 to 1213 kg/(m2 s). The influence of the quality, the heat flux, and the mass flow rate on the heat transfer coefficient is obtained. It is found that wider fin raises the heat transfer coefficient. A correlation is developed based on heat transfer mechanisms, and it predicts the experimental result with a 12% mean absolute error. Compared with a solid fin microchannels heat sink, the heat transfer coefficient of the copper foam fin microchannels is higher (up to 60%) when the heat flux is lower than 100 W/cm2. The copper foam fin microchannels may enhance the heat transfer coefficient and reduce the pressure drop at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang Z W, Hu D H, Li Q, et al. Visualization study on atomization characteristics and heat transfer performance of R1336mzz flash spray cooling. Sci China Tech Sci, 2021, 64: 2099–2109

    Article  Google Scholar 

  2. Shi C Y, Yu M J, Liu W, et al. Shape optimization of corrugated tube using B-spline curve for convective heat transfer enhancement based on machine learning. Sci China Tech Sci, 2022, 65: 2734–2750

    Article  Google Scholar 

  3. Zhang J J, Chen Y W, Liu Y, et al. Experimental investigation on heat transfer characteristics of microcapsule phase change material suspension in array jet impingement. Sci China Tech Sci, 2022, 65: 1634–1645

    Article  Google Scholar 

  4. Bowers M B, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int J Heat Mass Transfer, 1994, 37: 321–332

    Article  Google Scholar 

  5. Koşar A, Kuo C J, Peles Y. Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. J Heat Transfer, 2006, 128: 251–260

    Article  Google Scholar 

  6. Huang G, Li W, Ma J, et al. High-frequency alternating nucleate boiling of water enabled by microslot arrays in microchannels. Int J Heat Mass Transfer, 2020, 150: 119271

    Article  Google Scholar 

  7. Kuo C J, Peles Y. Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. J Heat Transfer, 2008, 130: 072402

    Article  Google Scholar 

  8. Law M, Lee P S, Balasubramanian K. Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels. Int J Heat Mass Transfer, 2014, 76: 419–431

    Article  Google Scholar 

  9. Deng D, Zeng L, Sun W, et al. Experimental study of flow boiling performance of open-ring pin fin microchannels. Int J Heat Mass Transfer, 2021, 167: 120829

    Article  Google Scholar 

  10. Cui P, Liu Z. Enhanced flow boiling of HFE-7100 in picosecond laser fabricated copper microchannel heat sink. Int J Heat Mass Transfer, 2021, 175: 121387

    Article  Google Scholar 

  11. Zhou J H, Chen X M, Li Q. Numerical study on two-phase boiling heat transfer performance of interrupted microchannel heat sinks. Sci China Tech Sci, 2022, 65: 679–692

    Article  Google Scholar 

  12. Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells. Int J Heat Mass Transfer, 2012, 55: 3618–3632

    Article  Google Scholar 

  13. Mancin S, Zilio C, Diani A, et al. Air forced convection through metal foams: Experimental results and modeling. Int J Heat Mass Transfer, 2013, 62: 112–123

    Article  Google Scholar 

  14. Yang Y, Ji X, Xu J. Pool boiling heat transfer on copper foam covers with water as working fluid. Int J Thermal Sci, 2010, 49: 1227–1237

    Article  Google Scholar 

  15. Diani A, Mancin S, Doretti L, et al. Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam. Int J Multiphase Flow, 2015, 76: 111–121

    Article  Google Scholar 

  16. Abadi G B, Kim K C. Enhancement of phase-change evaporators with zeotropic refrigerant mixture using metal foams. Int J Heat Mass Transfer, 2017, 106: 908–919

    Article  Google Scholar 

  17. Zhu Y, Hu H, Sun S, et al. Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 2–A flow-pattern based prediction method for heat transfer. Int J Heat Mass Transfer, 2015, 91: 502–511

    Article  Google Scholar 

  18. Zhu Y, Hu H, Sun S, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam. Int J Refrig, 2014, 38: 215–226

    Article  Google Scholar 

  19. Kim D Y, Nematollahi O, Kim K C. Flow-pattern-based experimental analysis of convective boiling heat transfer in a rectangular channel filled with open-cell metallic random porous media. Int J Heat Mass Transfer, 2019, 142: 118402

    Article  Google Scholar 

  20. Zhao C Y, Lu W, Tassou S A. Flow boiling heat transfer in horizontal metal-foam tubes. J Heat Transfer, 2009, 131: 121002

    Article  Google Scholar 

  21. Abadi G B, Moon C, Kim K C. Flow boiling visualization and heat transfer in metal-foam-filled mini tubes–Part I: Flow pattern map and experimental data. Int J Heat Mass Transfer, 2016, 98: 857–867

    Article  Google Scholar 

  22. Mancin S, Diani A, Doretti L, et al. R134a and R1234ze(E) liquid and flow boiling heat transfer in a high porosity copper foam. Int J Heat Mass Transfer, 2014, 74: 77–87

    Article  Google Scholar 

  23. Zhu Y, Hu H, Ding G, et al. Influence of metal foam on heat transfer characteristics of refrigerant-oil mixture flow boiling inside circular tubes. Appl Thermal Eng, 2013, 50: 1246–1256

    Article  Google Scholar 

  24. Hu H, Zhu Y, Peng H, et al. Influence of tube diameter on heat transfer characteristics of refrigerant-oil mixture flow boiling in metal-foam filled tubes. Int J Refrig, 2014, 41: 121–136

    Article  Google Scholar 

  25. Hu H, Lai Z, Zhao Y. Heat transfer and pressure drop of refrigerant flow boiling in metal foam filled tubes with different wettability. Int J Heat Mass Transfer, 2021, 177: 121542

    Article  Google Scholar 

  26. Gao W, Xu X, Liang X. Flow boiling of R134a in an open-cell metal foam mini-channel evaporator. Int J Heat Mass Transfer, 2018, 126: 103–115

    Article  Google Scholar 

  27. Deng D, Tang Y, Liang D, et al. Flow boiling characteristics in porous heat sink with reentrant microchannels. Int J Heat Mass Transfer, 2014, 70: 463–477

    Article  Google Scholar 

  28. Deng D, Chen R, He H, et al. Effects of heat flux, mass flux and channel size on flow boiling performance of reentrant porous microchannels. Exp Thermal Fluid Sci, 2015, 64: 13–22

    Article  Google Scholar 

  29. Deng D, Chen R, Tang Y, et al. A comparative study of flow boiling performance in reentrant copper microchannels and reentrant porous microchannels with multi-scale rough surface. Int J Multiphase Flow, 2015, 72: 275–287

    Article  Google Scholar 

  30. Zhang D, Xu H, Chen Y, et al. Boiling heat transfer performance of parallel porous microchannels. Energies, 2020, 13: 2970

    Article  Google Scholar 

  31. Xu J, Yu X, Jin W. Porous-wall microchannels generate high frequency “eye-blinking” interface oscillation, yielding ultra-stable wall temperatures. Int J Heat Mass Transfer, 2016, 101: 341–353

    Article  Google Scholar 

  32. Yu X, Xu J, Liu G, et al. Phase separation evaporator using pin-fin-porous wall microchannels: Comprehensive upgrading of thermal-hydraulic operating performance. Int J Heat Mass Transfer, 2021, 164: 120460

    Article  Google Scholar 

  33. Zong L X, Xia G D, Jia Y T, et al. Flow boiling instability characteristics in microchannels with porous-wall. Int J Heat Mass Transfer, 2020, 146: 118863

    Article  Google Scholar 

  34. Bell I H, Wronski J, Quoilin S, et al. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind Eng Chem Res, 2014, 53: 2498–2508

    Article  Google Scholar 

  35. Zhu Y. Heat-loss modified Angstrom method for simultaneous measurements of thermal diffusivity and conductivity of graphite sheets: The origins of heat loss in Angstrom method. Int J Heat Mass Transfer, 2016, 92: 784–791

    Article  Google Scholar 

  36. Kline S J, McClintock F A. Describing uncertainties in single-sample experiments. Mechan Eng, 1953, 75: 3–8

    Google Scholar 

  37. Shah M M. Unified correlation for heat transfer during boiling in plain mini/micro and conventional channels. Int J Refrig, 2017, 74: 606–626

    Article  Google Scholar 

  38. Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Proc Des Dev, 1966, 5: 322–329

    Article  Google Scholar 

  39. Thome J R, Consolini L. Mechanisms of boiling in micro-channels: Critical assessment. Heat Transfer Eng, 2010, 31: 288–297

    Article  Google Scholar 

  40. Jige D, Kikuchi S, Eda H, et al. Flow boiling in horizontal multiport tube: Development of new heat transfer model for rectangular mini-channels. Int J Heat Mass Transfer, 2019, 144: 118668

    Article  Google Scholar 

  41. Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transfer, 1980, 23: 73–87

    Article  Google Scholar 

  42. Bertsch S S, Groll E A, Garimella S V. A composite heat transfer correlation for saturated flow boiling in small channels. Int J Heat Mass Transfer, 2009, 52: 2110–2118

    Article  Google Scholar 

  43. Grosse J, Dietrich B, Garrido G I, et al. Morphological characterization of ceramic sponges for applications in chemical engineering. Ind Eng Chem Res, 2009, 48: 10395–10401

    Article  Google Scholar 

  44. Saitoh S, Daiguji H, Hihara E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter. Int J Heat Mass Transfer, 2007, 50: 5215–5225

    Article  MATH  Google Scholar 

  45. Kandlikar S G. Heat transfer mechanisms during flow boiling in microchannels. J Heat Transfer, 2004, 126: 8–16

    Article  Google Scholar 

  46. Qu W, Mudawar I. Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int J Heat Mass Transfer, 2004, 47: 2045–2059

    Article  Google Scholar 

  47. Ong C L, Thome J R. Macro-to-microchannel transition in two-phase flow: Part 2–Flow boiling heat transfer and critical heat flux. Exp Thermal Fluid Sci, 2011, 35: 873–886

    Article  Google Scholar 

  48. Saitoh S, Daiguji H, Hihara E. Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. Int J Heat Mass Transfer, 2005, 48: 4973–4984

    Article  MATH  Google Scholar 

  49. Bigham S, Moghaddam S. Microscale study of mechanisms of heat transfer during flow boiling in a microchannel. Int J Heat Mass Transfer, 2015, 88: 111–121

    Article  Google Scholar 

  50. Morisaki M, Minami S, Miyazaki K, et al. Direct local heat flux measurement during water flow boiling in a rectangular minichannel using a MEMS heat flux sensor. Exp Thermal Fluid Sci, 2021, 121: 110285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinGang Liang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51876102) and the Tsinghua University Initiative Scientific Research Program.

Supporting information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Fu, K., Xu, X. et al. Flow boiling heat transfer in copper foam fin microchannels with different fin widths using R134a. Sci. China Technol. Sci. 66, 3245–3258 (2023). https://doi.org/10.1007/s11431-022-2440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2440-y

Navigation